我 是 Z Z

概率好玄啊(好吧是我太弱.jpg

Description

桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元。可以随时停止翻牌,在最优策略下平均能得到多少钱。

数据范围与提示

输出答案时,小数点后第六位后的全部去掉,不要四舍五入.

Solution

乍一看感觉是道普通求期望,然后就在错误的路上速度与激情。。其实不难,但也是道挺好的概率dp

由于要求的是最佳方案,所以并不是所有方案的平均值,即不能把期望作为最终答案。所以该怎么做?遇事不决就dp啊!

考虑开二维状态数组f[r][b],一维已抽出的红牌,一维已抽出的黑牌。那么对于f[i][j],有i/(i+j)的平均最优解是由抽出红牌转移而来,j/(i+j)的平均最优解是由抽出黑牌转移而来。即:

f[i][j]=(i×(f[i-1][j]+1)+j×f[i][j-1])/(i+j)

又因为要求最优解,所以抽牌赔钱不如不抽,即可将值为负的状态转移为0。

所以有状态转移方程:

f[i][j]=max(0.0,((f[i-1][j]+1)×i+(f[i][j-1]-1)×j)/(i+j))

几点注意:

1.输出不能四舍五入,我在网上搜的几种避免四舍五入的方式不知为何都没用,只能手模了一个。。

1 ans=((int)(ans*1e6))/1e6;
2 printf("%.6lf",ans);

2.题面空间限制64m,5000×5000显然会炸,要开滚动数组。


代码如下:

 1 #include<bits/stdc++.h>
2 using namespace std;
3 int r,b,n;
4 double f[5001][5001],ans;
5 inline int read()
6 {
7 int x=0,f=1;
8 char ch=getchar();
9 while(ch<'0'||ch>'9')
10 {
11 if(ch=='-')
12 f=-1;
13 ch=getchar();
14 }
15 while(ch>='0'&&ch<='9')
16 {
17 x=(x<<1)+(x<<3)+(ch^48);
18 ch=getchar();
19 }
20 return x*f;
21 }
22 int main()
23 {
24 r=read(); b=read();
25 for(int i=1;i<=r;i++)
26 {
27 f[i&1][0]=i;
28 for(int j=1;j<=b;j++)
29 f[i&1][j]=max(0.0,((f[i-1&1][j]+1)*i+(f[i&1][j-1]-1)*j)/(i+j));
30 }
31 ans=((int)(f[r&1][b]*1e6))/1e6;
32 printf("%.6lf",ans);
33 return 0;
34 }

蒟蒻代码QAQ

(附身边高人JYFHYX T60的暴力搜索:

 1 using namespace std;
2 int j,d;
3 double r,b;
4 double f[5001][5001];
5 inline double dp(double black,double red)
6 {
7 j=black,d=red;
8 if(f[j][d])
9 return f[j][d];
10 if(black+red==0)
11 return 0;
12 return f[j][d]=(red/(black+red))(max(dp(black,red-1.0),0.0)+1)+(black/(black+red))(max(dp(black-1.0,red),0.0)-1);
13 }
14 int main()
15 {
16 cin>>r>>b;
17 int n=r+b;
18 for(int i=1;i<=r;i++)
19 {
20 f[0][i]=i;
21 }
22 for(int i=1;i<=b;i++)
23 f[i][0]=-i;
24 double ans;
25 ans=dp(b,r);
26 ans=((int)(ans*1e6))/1e6;
27 printf("%.6lf",ans);
28 }

爆搜

#include<bits/stdc++.h>
using namespace std;
double r,b;
double f[5001][5001];
inline double dp(double black,double red)
{
int j=black,b=red;
if(f[j][b])
return f[j][b];
if(black+red==0)
return 0;
return f[j][b]=(red/(black+red))*(max(dp(black,red-1.0),0.0)+1)+(black/(black+red))*(max(dp(black-1.0,red),0.0)-1);
}
int main()
{
cin>>r>>b;
int n=r+b;
for(int i=1;i<=r;i++)
{
f[0][i]=i;
}
for(int i=1;i<=b;i++)
f[i][0]=-i;
double ans;
ans=dp(b,r);
ans=((int)(ans*1e6))/1e6;
printf("%.6lf",ans);
}

缩进版

【BZOJ 1419】Red is good [概率DP]的更多相关文章

  1. BZOJ 1419 Red is good ——期望DP

    定义f[i][j]表示还剩i张红牌,j张黑牌的时候能取得的期望最大值 显然有$f[i][j]=max(0,\frac {i}{i+j}(f[i-1][j]+1)+ \frac {j}{i+j}(f[i ...

  2. BZOJ 1419: Red is good 期望dp

    数学期望可以理解成一个 DAG 模型. Code: #include <bits/stdc++.h> #define N 5003 #define ll long long #define ...

  3. BZOJ 3143 [Hnoi2013]游走 ——概率DP

    概率DP+高斯消元 与博物馆一题不同的是,最终的状态是有一定的概率到达的,但是由于不能从最终状态中出来,所以最后要把最终状态的概率置为0. 一条边$(x,y)$经过的概率是x点的概率$*x$到$y$的 ...

  4. bzoj 1419 Red is good - 动态规划 - 概率与期望

    Description 桌面上有R张红牌和B张黑牌,随机打乱顺序后放在桌面上,开始一张一张地翻牌,翻到红牌得到1美元,黑牌则付出1美元.可以随时停止翻牌,在最优策略下平均能得到多少钱. Input 一 ...

  5. bzoj 1419 Red is good(期望DP)

    [题意] R红B蓝,选红得1选蓝失1,问最优状态下的期望得分. [思路] 设f[i][j]为i个Rj个B时的最优期望得分,则有转移式为: f[i][j]=max{ 0,(f[i-1][j]+1)*(i ...

  6. BZOJ 1419: Red is good

    Sol 期望DP. \(f[i][j]\) 表示剩下 \(i\) 张红牌, \(j\) 张黑牌的期望. 有转移方程. \(f[i][j]=0,i=0\) 没有红色牌了,最优方案就是不再翻了. \(f[ ...

  7. BZOJ.1076.[SCOI2008]奖励关(概率DP 倒推)

    题目链接 BZOJ 洛谷 真的题意不明啊.. \(Description\) 你有k次选择的机会,每次将从n种物品中随机一件给你,你可以选择选或不选.选择它会获得这种物品的价值:选择一件物品前需要先选 ...

  8. BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]

    3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...

  9. BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

随机推荐

  1. docker-compose 的使用和负载均衡的初探

    docker-compose 的使用和负载均衡的初探 前言 a. 本文主要为 Docker的视频教程 笔记. b. 环境为 CentOS 7.0 云服务器 c. 上一篇:Docker 私有仓库 1. ...

  2. PC+PLC通过Modbus协议构建工控系统

    一. 概述 工业设备采用HMI+PLC控制是比较常见的方案,随着工业自动化的要求越来越高,现在很多设备都要求接入企业MES系统,MES系统一般为WEB系统,接口形式大部分为HTTP协议,这种传统方案和 ...

  3. css颜色字符串转换, 字符串转化为驼峰形式

    * 将 rgb 颜色字符串转换为十六进制的形式,如 rgb(255, 255, 255) 转为 #ffffff1. rgb 中每个 , 后面的空格数量不固定2. 十六进制表达式使用六位小写字母3. 如 ...

  4. ci框架驱动器

    1.驱动器什么是 驱动器是一种特殊类型的类库,它有一个父类和任意多个子类.子类可以访问父类, 但不能访问兄弟类.在你的控制器中,驱动器为你的类库提供了 一种优雅的语法,从而不用将它们拆成很多离散的类. ...

  5. 关于python中的可哈希与不可哈希

    可哈希:简要的说可哈希的数据类型,即不可变的数据结构(字符串str.元组tuple.对象集objects).它是一个将大体量数据转化为很小数据的过程,甚至可以仅仅是一个数字,以便我们可以用在固定的时间 ...

  6. P1712-[NOI2016]区间【线段树,尺取法】

    正题 题目链接:https://www.luogu.com.cn/problem/P1712 题目大意 \(n\)个区间,求出其中\(m\)个区间使得它们有覆盖同一个点且最长区间长度减去最短长度最小. ...

  7. JPA自动生成表

    一句话总结: 在配置文件中 jpa-hibernate-ddl-auto:update validate 加载 Hibernate 时,验证创建数据库表结构 create 每次加载 Hibernate ...

  8. PYTHON django 关于时间转换

    在安装django.默认会pytz时区库,import pytzpytz.timezone("UTC")now.astimezone("要转换的aware类型" ...

  9. WPF进阶技巧和实战03-控件(1-控件及内容控件)

    所有控件都继承自System.Windows.Controls.Control类,这个类添加一些基本结构: 设置控件内容对齐方式 (HorizontalContentAlignment,Vertica ...

  10. 小米路由器4a千兆版刷openwrt

    现在网上搜小米路由器4a千兆版刷机的都是刷的padavan的,很少能找到openwrt的刷机教程. 首先刷openwrt系统的时候要先刷入引导程序breed,网上有一篇帖子写的很详细(https:// ...