题目链接

https://www.luogu.com.cn/problem/P3381

题目大意

输入格式

第一行包含四个正整数 \(n,m,s,t\),分别表示点的个数、有向边的个数、源点序号、汇点序号。

接下来\(m\)行,每行包含四个正整数 \(u_i,v_i,w_i,f_i\),表示第 \(i\) 条有向边从 \(u_i\) 出发,到达 \(v_i\),边权为 \(w_i\)(即该边最大流量为 \(w_i\) ),单位流量的费用为 \(f_i\) 。

输出格式

一行,包含两个整数,依次为最大流量和在最大流量情况下的最小费用。

题目解析

(待补充,咕咕咕。。。)

参考代码

\(SPFA\)的两个优化可以有效提升速度。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF = (1LL) << 32;
const int N = 5005;
struct Edge{
int u, v;
ll cap, cost, flow;
};
vector <Edge> e;
vector <int> G[N];
ll a[N], d[N];
int inQ[N], p[N];
int n, m, s, t, cnt; void addEdge(int u, int v, ll cap, ll cost, int i)
{
e.push_back((Edge){u, v, cap, cost, 0});
e.push_back((Edge){v, u, 0, -cost, 0});
G[u].push_back(i);
G[v].push_back(i^1);
}
bool SPFA(ll &flow, ll &cost)
{
for (int i = 0; i <= cnt; ++i) d[i] = INF;
memset(a, 0, sizeof a);
a[s] = INF, d[s] = 0;
deque <int> Q;
Q.push_back(s);
inQ[s] = 1;
while (!Q.empty())
{
int x = Q.front();
Q.pop_front();
inQ[x] = 0;
for (int i = 0; i <G[x].size(); ++i)
{
Edge &b = e[G[x][i]];
if (b.cap > b.flow && d[b.v] > d[x] + b.cost)
{
d[b.v] = d[x] + b.cost;
p[b.v] = G[x][i];
a[b.v] = min(a[x], b.cap-b.flow);
if (!inQ[b.v] && b.v != t)//优化1:终点无需入队
{
inQ[b.v] = 1;
if (!Q.empty() && d[b.v] < d[Q.front()]) Q.push_front(b.v);//优化2:small label first
else Q.push_back(b.v);
}
}
}
}
if (d[t] == INF) return false;
flow += a[t];
cost += a[t]*d[t];
for (int u = t; u != s; u = e[p[u]].u)
{
e[p[u]].flow += a[t];
e[p[u]^1].flow -= a[t];
}
return true;
}
ll mincostMaxflow(ll &cost)
{
cnt = n; //cnt: count nodes
ll flow = 0;
while (SPFA(flow, cost));
return flow;
}
int main()
{
int u, v;
ll w, c;
scanf("%d%d%d%d", &n, &m, &s, &t);
for (int i = 0; i < m; ++i)
{
scanf("%d%d%lld%lld", &u, &v, &w, &c);
addEdge(u, v, w, c, i << 1);
}
w = mincostMaxflow(c=0);
printf("%lld %lld\n", w, c);
return 0;
}

感谢支持!

【模板】最小费用最大流(网络流)/洛谷P3381的更多相关文章

  1. 最小费用最大流 学习笔记&&Luogu P3381 【模板】最小费用最大流

    题目描述 给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 题目链接 思路 最大流是没有问题的,关键是同时保证最小费用,因此,就可以把 ...

  2. 【洛谷 p3381】模板-最小费用最大流(图论)

    题目:给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 解法:在Dinic的基础下做spfa算法. 1 #include<cst ...

  3. BZOJ 1449: [JSOI2009]球队收益 最小费用最大流 网络流

    https://www.lydsy.com/JudgeOnline/problem.php?id=1449 给每条路加上一个权值,每条路的费用是这条路的流量*权值,求最大流的最小费用. 每次spfa记 ...

  4. 洛谷.3381.[模板]最小费用最大流(zkw)

    题目链接 Update:我好像刚知道多路增广就是zkw费用流.. //1314ms 2.66MB 本题优化明显 #include <queue> #include <cstdio&g ...

  5. P3381 [模板] 最小费用最大流

    EK  + dijkstra (2246ms) 开氧气(586ms) dijkstra的势 可以处理负权 https://www.luogu.org/blog/28007/solution-p3381 ...

  6. 洛谷P3381 - 【模板】最小费用最大流

    原题链接 题意简述 模板题啦~ 题解 每次都以费用作为边权求一下最短路,然后沿着最短路增广. Code //[模板]最小费用最大流 #include <cstdio> #include & ...

  7. 洛谷P3381 最小费用最大流模板

    https://www.luogu.org/problem/P3381 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用 ...

  8. 经典网络流题目模板(P3376 + P2756 + P3381 : 最大流 + 二分图匹配 + 最小费用最大流)

    题目来源 P3376 [模板]网络最大流 P2756 飞行员配对方案问题 P3381 [模板]最小费用最大流 最大流 最大流问题是网络流的经典类型之一,用处广泛,个人认为网络流问题最具特点的操作就是建 ...

  9. 【网络流#2】hdu 1533 - 最小费用最大流模板题

    最小费用最大流,即MCMF(Minimum Cost Maximum Flow)问题 嗯~第一次写费用流题... 这道就是费用流的模板题,找不到更裸的题了 建图:每个m(Man)作为源点,每个H(Ho ...

  10. 洛谷 P4307 [JSOI2009]球队收益 / 球队预算(最小费用最大流)

    题面 luogu 题解 最小费用最大流 先假设剩下\(m\)场比赛,双方全输. 考虑\(i\)赢一局的贡献 \(C_i*(a_i+1)^2+D_i*(b_i-1)^2-C_i*a_i^2-D_i*b_ ...

随机推荐

  1. 计算机网络之网络层IP组播(IGMP、组播路由选择协议、组播地址)

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105318560 学习课程:<2019王道考研计算机网络> 学习目的 ...

  2. Spring Security:简单的保护一个SpringBoot应用程序(总结)

    Spring Security 在 Java类中的配置 在 Spring Security 中使用 Java配置,可以轻松配置 Spring Security 而无需使用 XML . 在Spring ...

  3. 算法:九宫格问题--奇数阶魔方(Magic-Square)

    一.魔方介绍 魔方(这里是简称,也可以叫幻方.魔术矩阵,Magic Square)是 n×n 正方形网格(n 为每侧的单元数),里面每个单元格填充了不同的正整数 1, 2, 3, ... , n2,并 ...

  4. Jquery取值方法汇总

    一.下拉框 1.jquery获取当前选中select的text值 var a = $("#ShareMoneyType").find("option:selected&q ...

  5. 数组中重复的数字 牛客网 剑指Offer

    数组中重复的数字 牛客网 剑指Offer 题目描述 在一个长度为n的数组里的所有数字都在0到n-1的范围内. 数组中某些数字是重复的,但不知道有几个数字是重复的.也不知道每个数字重复几次.请找出数组中 ...

  6. K8S在线部署含Dashborad

    参考文章 https://www.kubernetes.org.cn/5462.html 前言 Kubernetes作为容器编排工具,简化容器管理,提升工作效率而颇受青睐.很多新手部署Kubernet ...

  7. vue禁用浏览器回退

    解决方案 mounted() { history.pushState(null, null, document.URL) window.addEventListener('popstate', () ...

  8. Failed to start connector [Connector[HTTP/1.1-8080]]

    错误提示:Failed to start connector [Connector[HTTP/1.1-8080]]错误原因:Tomcat端口被占用解决方案(window下):1.cmd打开命令控制台2 ...

  9. 大爽Python入门教程 1-1 简单的数学运算

    大爽Python入门公开课教案 点击查看教程总目录 1 使用pycharm建立我们的第一个项目 打开pycharm,点击菜单栏,File->New Project 在Location(项目地址) ...

  10. Django 小实例S1 简易学生选课管理系统 4 实现登录页面

    Django 小实例S1 简易学生选课管理系统 第4节--实现登录页面 点击查看教程总目录 作者自我介绍:b站小UP主,时常直播编程+红警三,python1对1辅导老师. 本文涉及到的新的额外知识点: ...