下载附件是一个py文件,打开之后,发现是常规的rsa,不过有几个函数不知道。

这里记录一下,

Fraction(a,b) 相当于 a/b

Derivative(f(x),x) : 当x='x’时,f(x)的导数值

from Crypto.Util.number import getPrime,bytes_to_long
from sympy import Derivative
from fractions import Fraction
from secret import flag p=getPrime(1024)
q=getPrime(1024)
e=65537
n=p*q
z=Fraction(1,Derivative(arctan(p),p))-Fraction(1,Derivative(arth(q),q))
m=bytes_to_long(flag)
c=pow(m,e,n)
print(c,z,n)
'''
output:
7922547866857761459807491502654216283012776177789511549350672958101810281348402284098310147796549430689253803510994877420135537268549410652654479620858691324110367182025648788407041599943091386227543182157746202947099572389676084392706406084307657000104665696654409155006313203957292885743791715198781974205578654792123191584957665293208390453748369182333152809882312453359706147808198922916762773721726681588977103877454119043744889164529383188077499194932909643918696646876907327364751380953182517883134591810800848971719184808713694342985458103006676013451912221080252735948993692674899399826084848622145815461035
32115748677623209667471622872185275070257924766015020072805267359839059393284316595882933372289732127274076434587519333300142473010344694803885168557548801202495933226215437763329280242113556524498457559562872900811602056944423967403777623306961880757613246328729616643032628964072931272085866928045973799374711846825157781056965164178505232524245809179235607571567174228822561697888645968559343608375331988097157145264357626738141646556353500994924115875748198318036296898604097000938272195903056733565880150540275369239637793975923329598716003350308259321436752579291000355560431542229699759955141152914708362494482
15310745161336895413406690009324766200789179248896951942047235448901612351128459309145825547569298479821101249094161867207686537607047447968708758990950136380924747359052570549594098569970632854351825950729752563502284849263730127586382522703959893392329333760927637353052250274195821469023401443841395096410231843592101426591882573405934188675124326997277775238287928403743324297705151732524641213516306585297722190780088180705070359469719869343939106529204798285957516860774384001892777525916167743272419958572055332232056095979448155082465977781482598371994798871917514767508394730447974770329967681767625495394441 '''

那这里Derivative(artan§,p)相当于是1/1+p^2,而另一边是1/1-p ^2 ,再倒一下,那么这个z实际上就是p ^ 2+q ^2

n又是p*q

这里写脚本用到一些gmpy2的库函数,这里也记录一下

 Encoding=UTF-8

import gmpy2

# gmpy2.mpz(x)

# 初始化一个大整数x

gmpy2.mpfr(x)

# 初始化一个高精度浮点数x

C = gmpy2.powmod(M,e,n)

# 幂取模,结果是 C = (M^e) mod n

d = gmpy2.invert(e,n) # 求逆元,de = 1 mod n

gmpy2.is_prime(n) # 判断n是不是素数

gmpy2.gcd(a,b) # 欧几里得算法

gmpy2.gcdext(a,b) # 扩展欧几里得算法

gmpy2.iroot(x,n) # x开n次根
from Crypto.Util.number import getPrime,bytes_to_long
from sympy import Derivative
from fractions import Fraction
from gmpy2 import *
def num2str(n):
tmp=str(hex(n))[2:]
if len(tmp)%2==0:
pass
else:
tmp='0'+tmp
s=''
for i in range(0,len(tmp),2):
temp=tmp[i]+tmp[i+1]
s+=chr(int(temp,16))
return s
c=7922547866857761459807491502654216283012776177789511549350672958101810281348402284098310147796549430689253803510994877420135537268549410652654479620858691324110367182025648788407041599943091386227543182157746202947099572389676084392706406084307657000104665696654409155006313203957292885743791715198781974205578654792123191584957665293208390453748369182333152809882312453359706147808198922916762773721726681588977103877454119043744889164529383188077499194932909643918696646876907327364751380953182517883134591810800848971719184808713694342985458103006676013451912221080252735948993692674899399826084848622145815461035
z=32115748677623209667471622872185275070257924766015020072805267359839059393284316595882933372289732127274076434587519333300142473010344694803885168557548801202495933226215437763329280242113556524498457559562872900811602056944423967403777623306961880757613246328729616643032628964072931272085866928045973799374711846825157781056965164178505232524245809179235607571567174228822561697888645968559343608375331988097157145264357626738141646556353500994924115875748198318036296898604097000938272195903056733565880150540275369239637793975923329598716003350308259321436752579291000355560431542229699759955141152914708362494482
n=15310745161336895413406690009324766200789179248896951942047235448901612351128459309145825547569298479821101249094161867207686537607047447968708758990950136380924747359052570549594098569970632854351825950729752563502284849263730127586382522703959893392329333760927637353052250274195821469023401443841395096410231843592101426591882573405934188675124326997277775238287928403743324297705151732524641213516306585297722190780088180705070359469719869343939106529204798285957516860774384001892777525916167743272419958572055332232056095979448155082465977781482598371994798871917514767508394730447974770329967681767625495394441
p_plus_q=iroot(z+2*n,2)[0]
p_sub_q=iroot(z-2*n,2)[0]
e=65537
p=(p_plus_q+p_sub_q)//2
q=(p_plus_q-p_sub_q)//2
d=invert(e,((p-1)*(q-1)))
m=pow(c,int(d),n)
print(num2str(m))

buu [BJDCTF2020]easyrsa的更多相关文章

  1. rsa special

    [ReSnAd] -- iqmp ipmq e,c,\(\phi(n)\) 题目: class Key: PRIVATE_INFO = ['P', 'Q', 'D', 'DmP1', 'DmQ1'] ...

  2. 解决centos 7.5安装openvpn,mirrors.163.com提示没有可用软件包openvpn、easy-rsa问题

    提示: yum install openvpn 已加载插件:fastestmirror Loading mirror speeds from cached hostfile * base: mirro ...

  3. centos 7部署openvpn easy-rsa 3.0部署方法

    yum install openvpn easy-rsa openssl-devel mkdir -p /etc/openvpn/easy-rsa/cp -p /usr/share/doc/easy- ...

  4. openvpn之EasyRSA配置篇

    cd EasyRSA-2.2.2 vi vars #红色加粗的表示是我们需要修改的,其它的保持默认就可以 export EASY_RSA="`pwd`" export OPENSS ...

  5. Easy-RSA 3快速入门自述文件

    Easy-RSA 3快速入门自述文件 这是使用Easy-RSA版本3的快速入门指南.运行./easyrsa -h可以找到有关使用和特定命令的详细帮助.可以在doc /目录中找到其他文档. 如果您从Ea ...

  6. Easy-RSA 3 Quickstart README

    Easy-RSA 3 Quickstart README This is a quickstart guide to using Easy-RSA version 3. Detailed help o ...

  7. Buu刷题

    前言 希望自己能够更加的努力,希望通过多刷大赛题来提高自己的知识面.(ง •_•)ง easy_tornado 进入题目 看到render就感觉可能是模板注入的东西 hints.txt给出提示,可以看 ...

  8. BUU刷题01

    [安洵杯 2019]easy_serialize_php 直接给了源代码 <?php $function = @$_GET['f']; function filter($img){ $filte ...

  9. [BJDCTF2020]EzPHP

    [BJDCTF2020]EzPHP 解码:http://794983a5-f5dc-4a13-bc0b-ca7140ba23f3.node3.buuoj.cn/1nD3x.php 源代码: <? ...

随机推荐

  1. 10.11 arping:发送arp请求

    arping命令 是用于发送arp请求到一个相邻主机的工具,arping使用arp数据包检查局域网内所有设备的硬件地址.  arping 命令的参数选项及说明 -c <次数>       ...

  2. Google I/O 2021 Android精华内容

    Google I/O 2021结束了, 都有什么精彩内容呢? Android部分的Playlist附上: Android & Play at Google I/O 2021 Developer ...

  3. Mybatis3详解(十四)----Mybatis的分页

    1.前言 在前面学习mybatis的时候,会经常对数据进行增删改查操作,使用最多的是对数据库进行查询操作,但是前面都是简单的案例,所以查询的数据量不是很大,自然查询时没有任何压力,但是如果在实际的项目 ...

  4. Java | Stream流、泛型、多线程 | 整理自用

    1.lambda 表达式 lambda 的延迟执行 可以对程序进行优化,尤其是使用 if {} else {} 条件判断,先判断条件是否成立,再传入计算好的参数. functionName( para ...

  5. mysql 多字段联合唯一索引

    6个字段组成联合唯一索引 索引名称code_level_metric_type_week_year sql语句联合索引 CREATE UNIQUE INDEX code_level_metric_ty ...

  6. onnx算子大全

    本文通过此脚本从def文件自动生成.不要直接修改,而是编辑算子定义. 对于算子输入/输出的可辩别的,它可以是可辩别的.不可辩别的或未定义的.如果未指定变量的可辩别的,则该变量具有未定义的可辩别的. a ...

  7. 虹软人脸识别SDK接入Milvus实现海量人脸快速检索

    一.背景 人脸识别是近年来最热门的计算机视觉领域的应用之一,而且现在已经出现了非常多的人脸识别算法,如:DeepID.FaceNet.DeepFace等等.人脸识别被广泛应用于景区.客运.酒店.办公室 ...

  8. 1-3. SpringBoot基础,Java配置(全注解配置)取代xml配置

    最近突发奇想,整合一下以前一些学习笔记,分享自己这几年爬过的坑,逐步更新文章,谢谢大家的关注和支持. 这节讲一下SpringBoot的学习必须的一些基础,Java配置.其实在Spring2.0时代就已 ...

  9. springMVC异常处理(自定义异常)HandlerExceptionResolver

    注:本篇的异常主要指的是controller.service和dao层中执行方法抛出的异常. 一.为什么要处理异常? 因为如果我们不处理异常,异常信息就会直接抛出给浏览器,于是浏览器页面就直接显示异常 ...

  10. HashMap源码解析和设计解读

    HashMap源码解析 ​ 想要理解HashMap底层数据的存储形式,底层原理,最好的形式就是读它的源码,但是说实话,源码的注释说明全是英文,英文不是非常好的朋友读起来真的非常吃力,我基本上看了差不多 ...