题意:长度为n的序列,前m位恰好k位正确排序,求方法数

前m位选k个数正确排,为cm[m][k],剩余m - k个空位,要错排,这m - k个数可能是前m个数中剩下的,也可能来自后面的n - m个数

考虑这样一个问题,共n个数,前i位错排的方法数,显然dp[i][0] = i!

递推考虑:处理到第i个数时,等价于前i - 1个数错排的方法数减去在前i - 1个数错排的情况下第i位恰好为i的方法数,后者相当于n - 1个数前i - 1位错排

所以 dp[n][i] = dp[n][i - 1] - dp[n - 1][i - 1]

故结果为:

cm[m][k] * dp[n - k][m - k]

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 1008, INF = 0x3F3F3F3F;
const LL MOD = 1000000007; LL cm[N][N], dp[N][N]; void init(){
memset(cm, 0, sizeof(cm));
cm[0][0] = 1; for(int i = 1; i < N; i++){
cm[i][0] = 1;
for(int j = 1; j <= i; j++){
cm[i][j] = (cm[i - 1][j - 1] + cm[i - 1][j]) % MOD;
}
}
dp[0][0] = 1;
for(int i = 1; i < N; i++){
dp[i][0] = (dp[i - 1][0] * i) % MOD;
} for(int i = 1; i < N; i++){
for(int j = 1; j <= i; j++){
dp[i][j] = ((dp[i][j - 1] - dp[i - 1][j - 1] ) % MOD + MOD) % MOD;
}
} } int main(){
init();
int t;
cin >> t;
for(int i = 1; i <= t; i++){
int n, m, k;
scanf("%d %d %d", &n, &m, &k);
printf("Case %d: %lld\n", i, cm[m][k] * dp[n - k][m - k] % MOD); }
return 0;
}

  

UVA 11481 Arrange the Numbers(组合数学 错位排序)的更多相关文章

  1. UVa 11481 Arrange the Numbers (组合数学)

    题意:给定 n,m,k,问你在 1 ~ n 的排列中,前 m 个恰好有 k 个不在自己位置的排列有多少个. 析:枚举 m+1 ~ n 中有多少个恰好在自己位置,这个是C(n-m, i),然后前面选出 ...

  2. UVA 11481 - Arrange the Numbers 数学

    Consider this sequence {1, 2, 3, . . . , N}, as a initial sequence of first N natural numbers. You ca ...

  3. Light oj 1095 - Arrange the Numbers (组合数学+递推)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095 题意: 给你包含1~n的排列,初始位置1,2,3...,n,问你刚好固定 ...

  4. uva 10712 - Count the Numbers(数位dp)

    题目链接:uva 10712 - Count the Numbers 题目大意:给出n,a.b.问说在a到b之间有多少个n. 解题思路:数位dp.dp[i][j][x][y]表示第i位为j的时候.x是 ...

  5. UVA 10539 - Almost Prime Numbers(数论)

    UVA 10539 - Almost Prime Numbers 题目链接 题意:给定一个区间,求这个区间中的Almost prime number,Almost prime number的定义为:仅 ...

  6. light oj 1095 - Arrange the Numbers排列组合(错排列)

    1095 - Arrange the Numbers Consider this sequence {1, 2, 3 ... N}, as an initial sequence of first N ...

  7. UVa 11481 (计数) Arrange the Numbers

    居然没有往错排公式那去想,真是太弱了. 先在前m个数中挑出k个位置不变的数,有C(m, k)种方案,然后枚举后面n-m个位置不变的数的个数i,剩下的n-k-i个数就是错排了. 所以这里要递推一个组合数 ...

  8. POJ 3252 Round Numbers 组合数学

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13381   Accepted: 5208 Description The ...

  9. UVA 10539 - Almost Prime Numbers 素数打表

    Almost prime numbers are the non-prime numbers which are divisible by only a single prime number.In ...

随机推荐

  1. XP---------专区(Windows Exprience)--体验的简写

    待完善中 -------------------------------------- 1.0用u盘安装xp系统 用u盘给自己的或者朋友的电脑装上一个系统. 首先当然是下载一个系统文件,下面是本站的最 ...

  2. 使用n2n在没有公网IP条件下访问树莓派

    实现:在树莓派2和客户机都没有公网IP条件下实现远程访问控制 不足:暂时没实现网页代理 因为校园网环境没有公网IP,无法直接访问树莓派.之前有想过SSH反向代理:使用VPN,ddns(花生壳.no-i ...

  3. Google Maps API V3 之 图层

    Google官方教程: Google 地图 API V3 使用入门 Google 地图 API V3 针对移动设备进行开发 Google 地图 API V3 之事件 Google 地图 API V3 ...

  4. [Head First设计模式]策略模式

    系列文章 [Head First设计模式]山西面馆中的设计模式——装饰者模式 [Head First设计模式]山西面馆中的设计模式——观察者模式 [Head First设计模式]山西面馆中的设计模式— ...

  5. 2015.4.20 Canvas Jquery 移动端 JavaScript

    1.分享效果:弹窗Canvas渲染大图.   2.进度条中表现进度百分比的数值d%,根据进度的增长“字体颜色”为了表示清晰也随着变化 解决方法:参考Demo.   3.输入框保持查询参数,结果列表局部 ...

  6. vijos1250 最勇敢的机器人

    背景 Wind设计了很多机器人.但是它们都认为自己是最强的,于是,一场比赛开始了~ 描述 机器人们都想知道谁是最勇敢的,于是它们比赛搬运一些物品. 它们到了一个仓库,里面有n个物品,每个物品都有一个价 ...

  7. U盘安装Windows 7 + Ubuntu 14 双系统笔记

    第一个系统是Windows 7系统,现在采用U盘安装 Ubuntu 14,实现双系统,主要会用到3个软件: 1.DiskGenius - 磁盘修复.分区.调整分区工具,点击下载: 用这个工具先腾出一个 ...

  8. 最短JavaScript判断是否为IE6、IE的方法

    常用的 JavaScript 检测浏览器为 IE 是哪个版本的代码,包括是否是最人极端厌恶的 ie6 识别与检测. var isIE=!!window.ActiveXObject; var isIE6 ...

  9. 《征服 C 指针》摘录1:什么是空指针?区分 NULL、0 和 '\0'

    一.什么是空指针? 空指针 是一个特殊的指针值. 空指针 是指可以确保没有向任何一个对象的指针.通常使用宏定义 NULL 来表示空指针常量值. 空指针 确保它和任何非空指针进行比较都不会相等,因此经常 ...

  10. 1·3 对 git 的认识

    我可以诚实的说:这是我第一次听见这个名词 GIT.老师您发的关于git链接我下载了,只是还没看完.所以以下只是片面的理解,在后期我会单独再发一次. 一·GIT的简单介绍 1·Git是一款免费.开源的分 ...