[bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)
Description
给定长度为n的序列:a1,a2,…,an,记为a[1:n]。类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-
1,ar。若1≤l≤s≤t≤r≤n,则称a[s:t]是a[l:r]的子序列。现在有q个询问,每个询问给定两个数l和r,1≤l≤r
≤n,求a[l:r]的不同子序列的最小值之和。例如,给定序列5,2,4,1,3,询问给定的两个数为1和3,那么a[1:3]有
6个子序列a[1:1],a[2:2],a[3:3],a[1:2],a[2:3],a[1:3],这6个子序列的最小值之和为5+2+4+2+2+2=17。
Input
输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数。接下来一行,包含n个整数,以空格隔开
,第i个整数为ai,即序列第i个元素的值。接下来q行,每行包含两个整数l和r,代表一次询问。
Output
对于每次询问,输出一行,代表询问的答案。
Sample Input
Sample Output
HINT
1 ≤N,Q ≤ 100000,|Ai| ≤ 10^9
Solution
litc学长在暑假就讲过的题,现在临近寒假才过掉。。。
观察题目要求,容易得出若要优化暴力枚举,就要有技巧地统计每个元素产生的贡献
我们知道,任意元素x的贡献都可以表示为一个区间(l,r),其中a[l]<a[x] 且 a[r]<a[x]
询问时,我们用莫队离线做,分块一下
先按块编号和右端点下标分别为第一、第二关键字排序询问
区间最小值可以用st表预处理出来
对每个询问,我们用O(n^(1/2))时间进行转移,每次移除或加入一个元素时,统计此元素对当前区间[l,r]的贡献,算一下就行
最后输出就好了,我的程序有点慢,估计是变量名太长、函数太多
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define MaxN 100010
#define MaxBuf 1<<22
#define L long long
#define RG register
#define inline __inline__ __attribute__((always_inline))
#define Blue() (S == T&&(T=(S=B)+fread(B,1,MaxBuf,stdin),S == T) ? 0 : *S++)
#define dmin(x,y) ((x) < (y)?(x):(y)) char B[MaxBuf],*S=B,*T=B; inline void Rin(RG int &x) {
x=;RG int c=Blue(),f=;
for(; c < ||c > ; c=Blue())
if(c == )f=-;
for(; c > &&c < ; c=Blue())
x=(x<<)+(x<<)+c-;
x*=f; } L sl[MaxN],sr[MaxN],ans[MaxN]; int n,m,a[MaxN],block_size,log_pre[MaxN],pl[MaxN],pr[MaxN],_pb[MaxN]; struct Pr{
int fir,sec; Pr() {} Pr(RG int _,RG int __) : fir(_),sec(__) {} bool operator < (const Pr &other) const {
return fir < other.fir; } }f[MaxN][]; struct Request{
int l,r,id,belong; bool operator < (const Request &other) const {
if(belong == other.belong)
return r < other.r;
return belong < other.belong; } }Q[MaxN]; inline void Rmq_Init() {
for(RG int i=; i<; i++)
log_pre[<<i]=;
for(RG int i=; i<=n; i++)
log_pre[i]+=log_pre[i-];
for(RG int i=; i<=n; i++)
f[i][]=Pr(a[i],i);
for(RG int k=; k<; k++)
for(RG int i=; i<=n-(<<k)+; i++)
f[i][k]=dmin(f[i][k-],f[i+(<<k-)][k-]); } inline int Rmq_Query(RG int l,RG int r) {
RG int tim=log_pre[r-l+];
return dmin(f[l][tim],f[r-(<<tim)+][tim]).sec; } inline void Mono_Stack() {
RG int top=,i;
for(i=; i<=n; i++) {
while(top && a[_pb[top]] > a[i])
pr[_pb[top]]=i,top--;
_pb[++top]=i; }
while(top)pr[_pb[top]]=n+,top--;
for(i=n; i; i--) {
while(top && a[_pb[top]] > a[i])
pl[_pb[top]]=i,top--;
_pb[++top]=i; }
while(top)pl[_pb[top]]=,top--;
for(i=; i<=n; i++)
sl[i]=sl[pl[i]]+(L)a[i]*(i-pl[i]);
for(i=n; i; i--)
sr[i]=sr[pr[i]]+(L)a[i]*(pr[i]-i);
} inline L extend(RG int l,RG int r,RG bool c) {
RG int x=Rmq_Query(l,r);
return c ? (L)a[x]*(x-l+)+sl[r]-sl[x] :
(L)a[x]*(r-x+)+sr[l]-sr[x];
} inline void block_solve() {
RG L ans;
RG int l,r,i;
for(i=; i<=m; i++) {
if(i == ||Q[i].belong != Q[i-].belong)
r=(Q[i].belong-)*block_size,l=r+,ans=;
while(r < Q[i].r)
ans+=extend(l,++r,);
while(l < Q[i].l)
ans-=extend(l++,r,);
while(l > Q[i].l)
ans+=extend(--l,r,);
:: ans[Q[i].id]=ans; } } int main() {
Rin(n),Rin(m);
block_size=static_cast<int>(sqrt(n));
for(RG int i=; i<=n; i++)
Rin(a[i]);
for(RG int i=; i<=m; i++)
Rin(Q[i].l),Rin(Q[i].r),Q[i].id=i,Q[i].belong=(Q[i].l-)/block_size+;
std::sort(Q+,Q++m); Rmq_Init();
Mono_Stack();
block_solve(); for(RG int i=; i<=m; i++)
printf("%lld\n",ans[i]);
return ; }
[bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)的更多相关文章
- 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈
[BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...
- [BZOJ4540][HNOI2016]序列 莫队
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...
- [HNOI2016]序列(莫队,RMQ)
[HNOI2016]序列(莫队,RMQ) 洛谷 bzoj 一眼看不出来怎么用数据结构维护 然后还没修改 所以考虑莫队 以$(l,r-1) -> (l,r)$为例 对答案的贡献是$\Sigma_ ...
- BZOJ4540 Hnoi2016 序列 【莫队+RMQ+单调栈预处理】*
BZOJ4540 Hnoi2016 序列 Description 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- ...
- BZOJ 4540 [Hnoi2016]序列 (单调栈 + ST表 + 莫队算法)
题目链接 BZOJ4540 考虑莫队算法. 这题难在$[l, r]$到$[l, r+1]$的转移. 根据莫队算法的原理,这个时候答案应该加上 $cal(l, r+1) + cal(l+1, r+1) ...
- BZOJ 3809 Gty的二逼妹子序列 莫队算法+分块
Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方便,我们 ...
- 【bzoj4542】[Hnoi2016]大数 莫队算法
题目描述 给出一个数字串,多次询问一段区间有多少个子区间对应的数为P的倍数.其中P为质数. 输入 第一行一个整数:P.第二行一个串:S.第三行一个整数:M.接下来M行,每行两个整数 fr,to,表示对 ...
- BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...
- bzoj 4540 [HNOI 2016] 序列 - 莫队算法 - Sparse-Table - 单调栈
题目传送门 传送点I 传送点II 题目大意 给定一个长度为$n$的序列.询问区间$[l, r]$的所有不同的子序列的最小值的和. 这里的子序列是连续的.两个子序列不同当且仅当它们的左端点或右端点不同. ...
随机推荐
- 创业路(VC Pipeline),创业需要融资的阅读
企业家们经常问我,您的投资渠道(投资流程)到底是怎么样的? 看看有多少项目,有多少人遇到,频度,终于选择哪些公司进行了投资. 这让我认为有必要提高VC投资通道的可见度.同一时候也有助于介绍到底哪些方面 ...
- 删除指定表的所有索引,包括主键索引,唯一索引和普通索引 ,适用于sql server 2005,
原文:删除指定表的所有索引,包括主键索引,唯一索引和普通索引 ,适用于sql server 2005, --删除指定表中所有索引 --用法:declare @tableName varchar(100 ...
- Controller 的 Action 只接受 Ajax 请求
ASP.NET MVC 使 Controller 的 Action 只接受 Ajax 请求. 2014-08-27 14:19 by h82258652, 555 阅读, 2 评论, 收藏, 编辑 首 ...
- 你是否应该使用一个Javascript MVC框架?
你是否应该使用一个Javascript MVC框架?本文摘自smashingmagazine的Journey Through The JavaScript MVC Jungle部分内容,希望对大家有帮 ...
- PHP中实现在数据库中的增、删、查、改
其实要想在PHP中访问并获取到数据库中的数据其实并不难,下面我以例子为大家介绍: 首先,打开PHP软件和WampServer服务,确保在WampServer中的phpMyAdmin中有你要使用的数据表 ...
- Oracle组函数、多表查询、集合运算、数据库对象(序列、视图、约束、索引、同义词)等
count组函数:(过滤掉空的字段) select count(address),count(*) from b_user max() avg() min(),sum() select sum(age ...
- C#函数式程序设计之函数、委托和Lambda表达式
C#函数式程序设计之函数.委托和Lambda表达式 C#函数式程序设计之函数.委托和Lambda表达式 相信很多人都听说过函数式编程,提到函数式程序设计,脑海里涌现出来更多的是Lisp.Haske ...
- 使用with ties查询并列的数据
select top 1 with ties name,stuId,sex,score from stuInfo order by score desc
- 回调函数 use
$info["fulltext"] = preg_replace_callback( $search2, function($matches) use ($search, $uni ...
- 企业架构研究总结(30)——TOGAF架构内容框架之内容元模型(上)
2. 内容元模型(Content Metamodel) 在TOGAF的眼中,企业架构是以一系列架构构建块为基础的,并将目录.矩阵和图形作为其具体展现方式.如果我们把这些表述方式看作为构建块的语法,那么 ...