python中的多进程主要使用到 multiprocessing 这个库。这个库在使用 multiprocessing.Manager().Queue时会出问题,建议大家升级到高版本python,如2.7.11,可具体参考《python版本升级》。

  python使用线程池可参考《python线程池实现

一、多进程使用

1、linux下可使用 fork 函数

#!/bin/env python
import os print 'Process (%s) start...' % os.getpid()
pid = os.fork()
if pid==0:
print 'I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid())
os._exit(1)
else:
print 'I (%s) just created a child process (%s).' % (os.getpid(), pid)

输出

Process (22246) start...
I (22246) just created a child process (22247).
I am child process (22247) and my parent is 22246.

2、使用 multiprocessing

#!/bin/env python
from multiprocessing import Process
import os
import time def run_proc(name):
time.sleep(3)
print 'Run child process %s (%s)...' % (name, os.getpid()) if __name__=='__main__':
print 'Parent process %s.' % os.getpid()
processes = list()
for i in range(5):
p = Process(target=run_proc, args=('test',))
print 'Process will start.'
p.start()
processes.append(p) for p in processes:
p.join()
print 'Process end.'

输出

Parent process 38140.
Process will start.
Process will start.
Process will start.
Process will start.
Process will start.
Run child process test (38141)...
Run child process test (38142)...
Run child process test (38143)...
Run child process test (38145)...
Run child process test (38144)...
Process end. real 0m3.028s
user 0m0.021s
sys 0m0.004s

二、进程池

1、使用 multiprocessing.Pool 非阻塞

#!/bin/env python

import multiprocessing
import time def func(msg):
print "msg:", msg
time.sleep(3)
print "end" if __name__ == "__main__":
pool = multiprocessing.Pool(processes = 3)
for i in xrange(3):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, )) print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
pool.close()
pool.join() # behind close() or terminate()
print "Sub-process(es) done."

运行结果

Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
msg: hello 0
msg: hello 1
msg: hello 2
end
end
end
Sub-process(es) done. real 0m3.493s
user 0m0.056s
sys 0m0.022s

2、使用 multiprocessing.Pool 阻塞版本

#!/bin/env python

import multiprocessing
import time def func(msg):
print "msg:", msg
time.sleep(3)
print "end" if __name__ == "__main__":
pool = multiprocessing.Pool(processes = 3)
for i in xrange(3):
msg = "hello %d" %(i)
pool.apply(func, (msg, )) print "Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~"
pool.close()
pool.join() # behind close() or terminate()
print "Sub-process(es) done."

运行结果

msg: hello 0
end
msg: hello 1
end
msg: hello 2
end
Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~
Sub-process(es) done. real 0m9.061s
user 0m0.036s
sys 0m0.019s

区别主要是 apply_async和 apply函数,前者是非阻塞的,后者是阻塞。可以看出运行时间相差的倍数正是进程池数量

3、使用 multiprocessing.Pool 并关注结果

import multiprocessing
import time def func(msg):
print "msg:", msg
time.sleep(3)
print "end"
return "done" + msg if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(3):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print ":::", res.get()
print "Sub-process(es) done."

运行结果

msg: hello 0
msg: hello 1
msg: hello 2
end
end
end
::: donehello 0
::: donehello 1
::: donehello 2
Sub-process(es) done. real 0m3.526s
user 0m0.054s
sys 0m0.024s

4、在类中使用 multiprocessing.Pool

类中使用进程池会一般会出现错误

PicklingError: Can't pickle <type 'instancemethod'>: attribute lookup __builtin__.instancemethod failed

这个提示是因为 multiprocessing.Pool中使用了Queue通信,所有进入队列的数据必须可序列化(picklable),包括自定义类实例等。如下:

#!/bin/env python

import multiprocessing

class SomeClass(object):
def __init__(self):
pass def f(self, x):
return x*x def go(self):
pool = multiprocessing.Pool(processes=4)
#result = pool.apply_async(self.f, [10])
#print result.get(timeout=1)
print pool.map(self.f, range(10)) SomeClass().go()

运行提示

Traceback (most recent call last):
File "4.py", line 18, in <module>
SomeClass().go()
File "4.py", line 16, in go
print pool.map(self.f, range(10))
File "/usr/local/lib/python2.7/multiprocessing/pool.py", line 251, in map
return self.map_async(func, iterable, chunksize).get()
File "/usr/local/lib/python2.7/multiprocessing/pool.py", line 567, in get
raise self._value
cPickle.PicklingError: Can't pickle <type 'instancemethod'>: attribute lookup __builtin__.instancemethod failed

解决如下:(1)

#!/bin/env python
import multiprocessing def func(x):
return x*x class SomeClass(object):
def __init__(self,func):
self.f = func def go(self):
pool = multiprocessing.Pool(processes=4)
#result = pool.apply_async(self.f, [10])
#print result.get(timeout=1)
print pool.map(self.f, range(10)) SomeClass(func).go()

输出结果:

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

(2)一般情况下我们如果在类中写好了处理逻辑,想要尽可能减少代码变动则可以使用下面方法

#!/bin/env python

import multiprocessing

class SomeClass(object):
def __init__(self):
pass def f(self, x):
return x*x def go(self):
result = list()
pool = multiprocessing.Pool(processes=4)
for i in range(10):
result.append(pool.apply_async(func, [self, i]))
pool.close()
pool.join()
for res in result:
print res.get(timeout=1) def func(client, x):
return client.f(x) SomeClass().go()

输出结果:

0
1
4
9
16
25
36
49
64
81

使用(2)的解决方法需要注意,如果SomeClass实例中有包含任何不可序列化的数据则会一直报错,一般是到res.get()报错,这时候你就要重新查看代码是否有不可序列化的变量了。如果有的话可以更改成全局变量解决。

三、多进程中使用线程池

有一种情景下需要使用到多进程和多线程:在CPU密集型的情况下一个ip的处理速度是0.04秒前后,单线程运行的时间大概是3m32s,单个CPU使用率100%;使用进程池(size=10)时间大概是6m50s,其中只有1个进程的CPU使用率达到90%,其他均是在30%左右;使用线程池(size=10)时间大概是4m39s,单个CPU使用率100%

可以看出使用多进程在这时候并不占优势,反而更慢。因为进程间的切换消耗了大部分资源和时间,而一个ip只需要0.04秒。而使用线程池由于只能利用单核CPU,则再怎么加大线程数量都没法提升速度,所以这时候应该使用多进程加多线程结合。

def run(self):
self.getData()
ipNums = len(self.ipInfo)
step = ipNums / multiprocessing.cpu_count()
ipList = list()
i = 0
j = 1
processList = list()
for ip in self.ipInfo:
ipList.append(ip)
i += 1
if i == step * j or i == ipNums:
j += 1
def innerRun():
wm = Pool.ThreadPool(CONF.POOL_SIZE)
for myIp in ipList:
wm.addJob(self.handleOne, myIp)
wm.waitForComplete()
process = multiprocessing.Process(target=innerRun)
process.start()
processList.append(process)
ipList = list()
for process in processList:
process.join()

机器有8个CPU,则使用8个进程加线程池,速度提升到35s,8个CPU的利用率均在50%左右,机器平均CPU75%左右。

四、多进程间通信

个人使用的比较多的是队列和共享内存。需要注意的是队列中Queue.Queue是线程安全的,但并不是进程安全,所以多进程一般使用线程、进程安全的multiprocessing.Queue(),而使用这个Queue如果数据量太大会导致进程莫名卡住(绝壁大坑来的),需要不断地消费。

The Queue class is a near clone of Queue.Queue. For example:
from multiprocessing import Process, Queue

def f(q):
q.put([42, None, 'hello']) if __name__ == '__main__':
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print q.get() # prints "[42, None, 'hello']"
p.join()
Queues are thread and process safe.

测试卡住的程序如下:

#!/bin/env python
from multiprocessing import Process, Queue class A(object):
def __init__(self):
pass
def r(self):
def f(q):
import time
time.sleep(1)
s = 2000 * 'ss'        # 不卡不卡不卡
# s = 20000 * 'ss' # 卡住卡住卡住
q.put(['hello', s])
print "q.put(['hello', s])"
q = Queue(maxsize=0)
pL = list()
for i in range(10):
p = Process(target=f, args=(q,))
p.start()
pL.append(p)
for p in pL:
p.join()
print len(q.get()) if __name__ == '__main__':
A().r()

共享内存使用的一般是multiprocessing.Manager().Array/list/value/dict等。

其他的通信方式特别是分布式多进程可学习 廖雪峰官方网站 http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000/001386832973658c780d8bfa4c6406f83b2b3097aed5df6000

python 多进程使用总结的更多相关文章

  1. Python多进程编程

    转自:Python多进程编程 阅读目录 1. Process 2. Lock 3. Semaphore 4. Event 5. Queue 6. Pipe 7. Pool 序. multiproces ...

  2. Python多进程(1)——subprocess与Popen()

    Python多进程方面涉及的模块主要包括: subprocess:可以在当前程序中执行其他程序或命令: mmap:提供一种基于内存的进程间通信机制: multiprocessing:提供支持多处理器技 ...

  3. Python多进程使用

    [Python之旅]第六篇(六):Python多进程使用   香飘叶子 2016-05-10 10:57:50 浏览190 评论0 python 多进程 多进程通信 摘要:   关于进程与线程的对比, ...

  4. python多进程断点续传分片下载器

    python多进程断点续传分片下载器 标签:python 下载器 多进程 因为爬虫要用到下载器,但是直接用urllib下载很慢,所以找了很久终于找到一个让我欣喜的下载器.他能够断点续传分片下载,极大提 ...

  5. Python多进程multiprocessing使用示例

    mutilprocess简介 像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多. import multipr ...

  6. Python多进程并发(multiprocessing)用法实例详解

    http://www.jb51.net/article/67116.htm 本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Pyt ...

  7. python 多进程开发与多线程开发

    转自: http://tchuairen.blog.51cto.com/3848118/1720965 博文作者参考的博文:  博文1  博文2 我们先来了解什么是进程? 程序并不能单独运行,只有将程 ...

  8. Python多进程----从入门到放弃

    Python多进程 (所有只写如何起多进程跑数据,多进程数据汇总处理不提的都是耍流氓,恩,就这么任性) (1)进程间数据问题,因为多进程是完全copy出的子进程,具有独立的单元,数据存储就是问题了 ( ...

  9. day-4 python多进程编程知识点汇总

    1. python多进程简介 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心.Python提供了非常好用的多进程包multiprocessing,他提供了一 ...

  10. python 多进程 logging:ConcurrentLogHandler

    python 多进程 logging:ConcurrentLogHandler python的logging模块RotatingFileHandler仅仅是线程安全的,如果多进程多线程使用,推荐 Co ...

随机推荐

  1. Spark 开发中遇到的一些问题

    1.StackOverflowError 问题:简单代码记录 : for (day <- days){ rdd = rdd.union(sc.textFile(/path/to/day) ... ...

  2. jQuery? 回归JavaScript原生API

    如今技术日新月异,各类框架库也是层次不穷.即便当年漫山红遍的JQuery(让开发者write less, do more,So Perfect!!)如今也有被替代的大势.但JS原生API写法依旧:并且 ...

  3. atitit 商业项目常用模块技术知识点 v3 qc29

    atitit 商业项目常用模块技术知识点 v3 qc29 条码二维码barcodebarcode 条码二维码qrcodeqrcode 条码二维码dm码生成与识别 条码二维码pdf147码 条码二维码z ...

  4. backup3:master 数据库的备份和还原

    在SQL Server 中,master 数据库记录系统级别的元数据,例如,logon accounts, endpoints, linked servers, and system configur ...

  5. SQL Server系列目录

    一.SQL Server基础部分 1  数据库概念及规范化设计 1.1 数据库物理模式设计 1.2 Microsoft SQL Server Management Studio模板资源管理器 2 数据 ...

  6. 【分布式】Zookeeper系统模型

    一.前言 前面已经讲解了Zookeeper的一些应用场景,但是并没有深入到Zookeeper内部进行分析,本篇将讲解其系统模型. 二.系统模型 2.1 数据模型 Zookeeper的数据节点称为ZNo ...

  7. 使用swagger作为restful api的doc文档生成

    初衷 记得以前写接口,写完后会整理一份API接口文档,而文档的格式如果没有具体要求的话,最终展示的文档则完全决定于开发者的心情.也许多点,也许少点.甚至,接口总是需要适应新需求的,修改了,增加了,这份 ...

  8. ASP.NET Core 中文文档 第三章 原理(2)中间件

    原文:Middleware 作者:Steve Smith.Rick Anderson 翻译:刘怡(AlexLEWIS) 校对:许登洋(Seay) 章节: 什么是中间件 用 IApplicationBu ...

  9. jquery时间日期三级联动

    <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default3.aspx.cs ...

  10. C# - 多线程 之 Process与Thread与ThreadPool

    Process 进程类, // 提供对本地和远程进程的访问,启动/停止本地系统进程 public class Process : Component { public int Id { get; } ...