aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA+4AAAC5CAIAAAA55fI7AAAZa0lEQVR4nO3dPW7bQIMG4L2MT6B7+Ag5gaocIM22atzsDdIHuoNhwJUhIMUC2aRMoSpObPgzIHsL/Q3JGXIoyaJGeh6oiGmSM5wZkq/okfJf7wAAQIH+a+gKAAAAuxDlAQCgSKI8AAAUSZQHAIAiifIAAFCk7ij/f2tHqA0AAJBJlAcAgCKJ8gAAUCRRHgAAiiTKAwBAkUR5AAAokigPAABFEuUBAKBIojwAABRJlO8wn8+HrkJJNFfp9OAlO1rvG2YfRMNyBIbZqTl2lJ9NRoHxdB7+JvzxFMyn41SdTrC2DbPJaDSZHXI/7UcdNtcJt896CH5s/fZq/G1Lzqfjtnp2/LpvlVoG/M4OMhKCnRyn+7KqdJCz63T07/14G3T2+EcMM94P14Pn7lSuISfmzG70uyn2jDhmlJ9NRtVWaiw4MYXfcg4f5duV0VxHOlX3KiZ3437X0WGi/IGdzJX2ZCpyMEcLggUMszKJ8lku8qAznNeNfkfFDo7jRfloEwWDYhVLaqsFP86n4+bT/NlkNJ7ONr9JDLBg09Sbh8begwWT2er553SyXmEToloqsPkLxHLD+PiIHlVXzfcrNKM1EvsJouNmJ6sFteYKQ2bPjotXr9L+//PflXrPp+PYYUTKDf4oFG4Q7GA+Ha9/FwzO6CHUhkSy8Tu6uF7ZyWw2CXYY9HllJ/OuQd/Sj9FK1Xow76j/dzoebX4cjSazbYGrneScKZ0tFFwcIt2Xt5f6iK1vM8o6vyoNO5kGvZZdkfQaqQ1jnTjvbPnUDqNHl9n7icrUW6alx/MLirdXvO/je6lVoHbJiO0wOkj6nsHdfdq3Yo1LTWS1A/bgHuNztrmUVu/klZ92vSP07pT8W8BOFdu1DrF7R7j6bud1c5851Sv6Rn8CN+6TcbQo3/kAcb1C5Zzf/FB5I1h9AzAKU0OskMYem+dwuMr232Gh8+m4MUC3g6BZgeCfqxERuwHV36nU1knVPFVo7S9f0UIzWiO5n8pRN/ol+ne3ymHV2ifVbrHqVdu/cWOIvkmMlZt+S7k+xPF4HCSReXpXtSGRaLT40EpXdnVVWbfutr0bfZx4B1Pbb6wfU2dTqjcbF8fa1bs5KrcbdJ4pqYJC26tH8qFJ7qlUb5M+51d9h7ESMw6n+2pTv8RFriTdLd/3mpnb+xlXmPweT56nifbqdQFP9VFbv7de1lLjc5c+7VOx5t0nudoBerDfsbTcLKJRvu+w3LlT+t0C+t+q9qlDrUPrW3Se1z3vR23VK/pGP/CN+5QcK8p3x47m6An+WW/Kze5S14vWctovXtVSoteOeG1rFa6//0xF+exBUr1FxQsN93Wo1qiU23y7tRE7w+v9nqhrqqqJG0AjuLVk88gxtMSP+XQ8mSwfha93kdxVtUqpRuvuhdqhbQfLOslXV9j8VB1jEblV2hxh7cbatc575GrZ+HfGmRIvqHYkOVE+3dL9zoWcwZlo3JzDyboErTdMXUk6W773NTOj97OuMF09Xs+B8fM0qccFPO+C2H6qZo3Pvtv2rFj6HURytX16sO/4DJan3pbsfivfuVP63gL63qr2qkO6QzvP693uRzkXohJv9EPeuE/LQFF+9Xgp/ONF5G5dafuGyFhra/3lrX40it/wtyXUahlG+WqHt92u8u9Qm4LTo6ZZ83Sh4eWh7e1TW2uk97M66ry3+NG4GebQlo5rVq/1vGyJE426pW+byxvTeDpbJujVkvSuKiWnGy06tBLN1qhqrF8bJSSkqpQ+m2pPfpLrVG/d4SOU5uOUjDMlXlAoI8q3nkqdUSjn/EpVKSwh73AiQyK1Yd79KNLy/a+Z3b2fd4XpE+XT52nDDhfweB+ldhgtO69D4xVo7YIeFUunmMhqh+jBnuMzebPodb7n3dTyO6XvLaDnrWq/OqQv3p1X1Pz7UVf1zuFGP+CN+8QMPcGmcn6Ff+WYzLIeSmTedINx3Ppmaz2yttfDj47yYbmpi3Wj5vtE+e7WGPQMT1WvcTCrBekTvF+Un0/HyxvTcuBNZvPpuDEwq7vKvCIEhxi72qcfn6xrkH7zkUynrVVKn03VKJBe58BRvv0wqnvufFYSPZUSpfQ7v1JVCkvIO5xq8W3nVOajpUSU73fN7O79gaL8zhfwVGKO7zCZGtuTe3W05fRp34rF7j7J1Q7Rgz2OZZco32dY9uqU+v4+OsrvXoejRPmu6p3DjX7AG/eJGfhjr/Eov1x3GrRp8vKdcdOt9WhnFqh2+W5RvlbofDruqljsrEnWPF1o/YK/U2sk9xOct619uV0zmUSy2q3tDF8umaZP8MR7qVT/z6fjyXR5FZgvPxazqkjmY4Kcxo/2cuQ2vRla8aZqC/ihVJWSm1YzVnqdA0b5nOPojvI5p1KPcyEzyscaN+twQuvapjZMXUlybvn9rpkZvZ81yPtE+ZxnHrtfwNN9FN1hzsUwS1ef9q1Y81KTXu0QPdjnWNpuFr3O9z7r53RK31vADreq3euwR5Tf7X4UdQY3+gFv3Cfm6F9GWX8DFH+CsvpNNTJUR3X73aJW7HphpcSWdZqPNnpG+fpwjz1zrwT8xD0sXvO2Qte/SBSa0xrJ/USOOmiX2BnePMjorSZ64leqF7n2NQZJa+OGnZG8lWwObzweV+sR2VWtSolGiw+tesGRobJO8vEOzrq2pPoxdTbVB3xqnUNG+WRBtSZqjSidp1J0xPY+v+o7rDRuMCo6Did9tenqlKDQ7pbve83M7f2OK0y/a2PyPE03V/4FPNFHGf1eu6x1jc++fdq3Yunw0VjtAD3Yf3wmLzJhG3ac76nRsnOn9L0F9LxV7VWHPaJ8r/tRj+oVeqMf8MZ9Wo79X0SteiX+l8no06fops3xHfkp3HVQYNuduVarYAz1jfLhLsfT6SQ+Eqo16/p99Dyo/bRppeQXjeW0RmI/QR9te6Oa61YLwt4MOm7bCMlDSFQvdu2LDJLoIVQuYskon3hLlN5V/PlBs/GjQytR08l0fdGYh//7U6S1K9e3WWJ8pcdD9GyqXTSj6xw8yicrE+iK8u/dp1J0xPY/v6pVmm1bN6h15+GkhkRqw9iVpLvlUztMHl1G779nXGG6ezxZUGIQ73oBn01Go8lk0tx5coexQZLToYkKpLbtW7H6pSZV/wP1YN/xGbTaJHEHnIVH0PNWvnun9L0F9LtV7VGHfaJ8/j57Va/cG/1Rb9zpW+3Ajh3lL9TJ9n/R0tfDizOfToyvS+BK0kM6sw3sZCu2t/M9MgbjRp9BlP8Ylb9nlfDnmQJVnltfNkn+bLmS7O5kc+XJVmxv53tkDMWNPoco/1Gy/ijLbpaNq1m5AK4kuzrZXHmyFdvb+R4ZA3CjzybKAwBAkUR5AAAokigPAABFEuUBAKBIojwAABRJlAcAgCKJ8gAAUCRRHgAAiiTKAwBAkUR5AAAokigPAABFEuUBAKBIojwAABRJlAcAgCKJ8gAAUCRRHgAAiiTKAwBAkUR5AAAokigPAABFEuUBAKBIojwAABRJlAcAgCKJ8gAAUCRRHgAAiiTKAwBAkUR5AAAokigPAABFOlqUn0/Ho6bJbL+9DmA2GY2n81PeIQAAF+GoUf4sEqvkDQDASTiRKB88s9+uNJ+Ox9PppLa0ZZOgjPl0vH7mX/17wOrvAMtVVzsfjSaz99mkusZsMhpPZ5ttN38/CKN8tNotNmUsi17uc7XD2aTyR4rgx2gptep5dwEAcHFOIcoHsXsZYcM4Ht+msrfgh3UAnk/HtSWbnS9/WsbjTZYehbl/uWW4NKziJsqn6pBSP7L6Dhs13VQ0daTh2w5hHgDg0gw5Vz7IteGc+XiKrag9wQ53MZuMJrPZJDELv7LvytuHxr9TT8mjyTtyGJGig4OJvTcI9piqxbaU6i/qqwEAcP5O4Kl8ffL5Zs1kOI5+hDacZdPYbDOzZRR7mxDWoBHZ67VaLW+tQ6LO0TcsQUHNAJ8uRZQHALh0xUb5ZGquzDzZhPh6WD5IlO8zpyUnyq8Xbn+X+4cJUR4A4PKcQJRvnWDTMU8mtrPxdF6ZKh+W2i/K95pg06V7gs26lGlw3MlSRHkAgEt3AlG+9WOviXxa/UTsZpvtFrHAvZqtslmzO8rHPlda+dhrpA5ZLRDuvJLxKx+IbTlSUR4A4OKdQpR/T38ZZUs+DaeRR76tphbJ17Pkg6+4yXkqP5k0apX4MsrEGlXVL6OM/uEgMtU/WoooDwBw6Y4W5YuzRzqeTyeds+j9T1MAAOxHlE/ZPcrHk3xlBs7Z/N+3AAAMRpRPOfyclfh0HAAA2IkoDwAARRLlAQCgSKI8AAAUSZQHAIAiifIAAFAkUR4AAIokygMAQJFEeQAAKJIoDwAARRLlAQCgSKI8AAAUSZQHAIAiifIAAFCkwqL822Lx+vT88vjvP2f3enn89/r0/LZYDN3GAACUoaQo/7ZYvPz5O3jm/thA/+evNA8AQI6Sovzr0/PgUfsIr9en56FbGgCAApQU5c/+kfzy9fL4b+iWBgCgACVF+cFD9tFeQ7c0AAAFKDjK//76+e7q5sfj/cPV9f3XX8uFP75c311d311dP9wOGsd/fru/uvmRXiFaeVEeAIB8R43y8+l4tDKezntvXg/Etzd3Vzc/Hn99/1RLw7++f9o5yu+zbY8on668KA8AQJYjRvnZZDSazN7f31eZfvXv4Lc19bgfScOfvv2OhO9Cony88qI8AABZjhzl6wG+l93j+M9v91eNiTeNhb+/fr5bL7m7ur67+vz952rlzbydu01A79pnx5qtr32bGgCACzDMBJvd8vyuUf7+YfuA/P5hFdCjC+NP5X98ub77ct946L7eZPvv+4dNWN8+lU8VJMoDALCXAT72Gn86v8MEm8woX3lSvn7WHl0Yj/KR/P376+cw3P/4cv1wu5kzU43yyYJEeQAA9nKsKD+bBMl8Ph3v8rnXHaN8mLAfWxd+RJRPFiTKAwCwl2NF+coHXYMPwPaxxwSb5iT16MJVLm9+H07WBJvtwl/fP23myicLEuUBANjH0T/2+rFz5ZcZevsKZq6vF1YenDcWVpZXZt3UP8x6e9OcM7P54OzDbTBFPlVQa5Sv/BkDAAAaCv4vos749f7+/j6fTkR5AADSSoryL3/+Dh6yj/B6efz3LskDANClpCj/+vQ8eM4+wuv16XnolgYAoAAlRfm3xeLsH8y//Pn7tlgM3dIAABSgpCj//v7+tli8Pj2/DB24PyTEP/57fXqW4wEAyFRYlAcAAJZEeQAAKJIoDwAARRLlAQCgSKI8AAAUSZQHAIAiifIAAFAkUR4AAIokygMAQJFEeQAAKJIoDwAARRLlAQCgSOcc5d8Wi9en55fHf//xOujr5fHf69Pz22IxdA8DAFy0s43yb4vFy5+/g6feM369/PkrzQMADOhso/zr0/PgYffsX69Pz0P3MwDA5TrbKO+R/BFeL4//hu5nAIDLNWCUn0/Ho/F0vvzX8h/JFdt+HTd4zL2Q115DAACAPQwY5WeT0Wgyy1qvf5JvRvlf3z9d311d311dP9yuFv7++vnu6ubH4/3D1fX911/LhT++1Ffb/xUt6Gibb18/v91f3fzoW9DtzbJB7j59+y3KAwCcjONG+fl0PFqazGaT0SqizyabSD+brH6/fV5f+TlfLMp//v6zuvD25u7q5sfjr++fahH51/dPO0f52LbJgvJee26eHeXbCvr57V6UBwA4JUeM8vPpePMYfhXZJ7P3YP7MNtxXJ980n91vE/9olIj6uVH+07ffkfD9AVE+XlB2lN9n815RPlWQKA8AcGKOFuW34XzzYzXJV1fY/LTb9JrMKJ8fx39+u79qTLxpLPz99fPdesnd1fXdVX6Ju7w2c4HuNgG9q54da7a/DRDlAQBOybGifC3JBz+vptfUVwjWy5lQ33DQKH//sH2Yff+wCujRhbG3AR+X47/c19P2phrbf98/bML69ql8qvKiPABAMY4V5eufcd1E9PVD+cSHYOMP5Q81wSYzyleeaq+ftUcXHi/KR/L376+fw3D/48v1w+1mzkw1yicrL8oDABTjmE/lg6Te/MxrNcqvE3zut9w0HTLKh2n4sXVhKVE+WXlRHgCgGEebKx98pnX1UH2d4INPwi7/WZlHv9tM+cNPsGmm8+jCVYbO/Z6Z25tdv/Xy1/dPeRNstguXX8e5mWDTs1xRHgDgxBz7G2yWX1wzXUf0yv/+FH5VZXXRDg/md43y26+fr3wkNJyRUnnI3VhYWd5V4nLNWiLvleZrH2bdfAd8UPTmw7gPt8EU+VTl+0f5XT+ZDADAXgb8L6I+1q5R/siv/k/Hh3p5Kg8AcGLONsq//Pl74lF++bB8r//yaego/yLKAwAM52yj/OvTcyPK9/kada/NazNppxHlX5+eh+5nAIDLdbZR/m2xaDyY9zrk6+XP37fFYuh+BgC4XGcb5d/f398Wi9en55ehI+/5vV4e/70+PcvxAADDOucoDwAAZ0yUBwCAIonyAABQJFEeAACKJMoDAECRRHkAACiSKA8AAEUS5QEAoEiiPAAAFEmUBwCAIonyAABQJFEeAACKJMoDAECRRHkAACiSKA8AAEUS5QEAoEiiPAAAFEmUBwCAIonyAABQJFEeAACKJMoDAECRRHkAACiSKH+53haL16fnl8d//zm718vjv9en57fFYug2ZhdnPDINVwAOS5S/UG+Lxcufv4OHmI9NSH/+ikfFuYSRabgCcCii/IV6fXoePLsc4fX69Dx0S9PPhYxMwxWAgyggys/n84J2W4oLefD58vhv6JYu0oBnx4WMTMMVgIM4WpSfT8ejuvG0Ky/Mp+OMtXaqzAfsdjYZjSazQ+/1YwyeWo72+uCGLKnT8/Q/Ow7aBoMPmLMergCcm6NG+erdPicxiPIfpRYgfn/9fHd18+Px/uHq+v7rr+XCH1+u766u766uH24HzTc/v91f3fxIrxCt/LGyUUmdnue0ovxJj8zyhisA52bAKP/+PpsEkSF4bL9aGCyZzOp5YfvTfDoeT6eT9ZazyWg8nW02bWaS2m6bm0dLidawZjYZjSbTzVrh4Sa23SyOLqzsJVmxrl3Ha1tPGLc3d1c3Px5/ff9Uixe/vn/aOTDts22PbJSufCwb9Wvz9rG0U6fH6pLXd7PJZul0PQCWwXs62ZY/C/7dtsPo0dXOjp6VSR/eKPtEKmlkHmG4AkCrE4nylQeBwQ/h8pYoXwso29gwm0TTQrjbyOapUmI1rB1PLQG1bzurxrHIYc4mmx0mKhYu7lPbSLz49O13JOKcQGDKyUbxyjezUe827xpLfTs9VpesvgvKX2XhzXHE6rvdsm2HsaOrnx05J2YsyidaNX7UWyWNzA8frgDQYcAoH4SH+h19s3JulA9iUstj9cr+o2ElKzHHD6e50vrH1LY50xK262RWLHrUkdruHnp+fru/akxvaCz8/fXz3XrJ3dX13dXn7z9XK29mR9xtEk/XPjvWbH21tsxObd62x65O76xMy2gJhun2PUPw7iEek5M1yTihModur1btWnnAkRl9DTlcAaDLoB97Xd/QY79bhoncKJ+MFXlRvnPzdA1D1bS1LiW1beuU5M3sha6n8kHVYhMYkrXdNTDdP2yfON4/rGJQdGEsbC2D0Zf7xlPM9Sbbf98/bNLP9jFnqqDcbHSgNt+906vb9ui7+luB6F8XKpVZrZGuSXeUzx260Te2yVaNHHVoqJGZzPHDDVcA6DTMU/lgDsP6d/GAdUpRvvuTgOlUF9u2dZZO87Fox3GtE9N4Os+q7Y6BqfLocf1EM7owHpgigeb3189hWvrx5frhdjMJoZqNkgXtGeV3bPP10h6dHpXTd3tF+ZaPdnRG+ZyhG4/yqVaNHHVooJEZfQ08XAGg02ATbCppPvk391OJ8llTCHLnWrTWrZYM+8XK9XFl1HbHwBRGlsfWhR8R5ZMFZWejw7d5z05P6uq7tgk2bVE+XZMdJth0HHRLhTPOxJWBRuYHRPn9hysAdBl4rvx6UfWzp9tZ9I3Pp4brf0iUbyslVsPGEa03DlZJbRt7OxJWeDUTIZjs0KxYff1g5dba7hiYwokEj+0LV0Gn+a0jWTMWtgt/ff+0mXycLCg7G/Vq89wo36fTo3XJ6bvEJ007o3zG8Gs2TPxD4dXKhAfdMek/bNX4UW8NNDKTRQw6XAGgw9DfYFNL841JxeF3dQTzbpdfordzlA93m3iPUS8lWcPqhsG3+1VWSWwbmzYcTC6ezCoHEK9YczJyTm0zo1L4AcFgKvB6YeVJZGNhZXllbkP904G3N81JCJuPJz7cBnOOUwXlZ6MebZ49waZXp1c37tN3wQCYTiIJPx7lUztMHl31pEtVZr495mn8LEuN5MRRrww3MjvLOtJwrf09AwBaHC3Kc1p6PSks+jV0S3+M8417gw8YwxWAgojyF+rlz9/BU8sRXi9nk40qU3R6faq2MBcyMs98uAJwLKL8hXp9eh48uBzh9fr0PHRLH0z3fJ2zcCEj8+yHKwDHIcpfqLfF4uwff778+fu2WAzd0vRzCSPTcAXgUET5y/W2WLw+Pb8MnWA+JBU9/nt9ehaMCnXGI9NwBeCwRHkAACiSKA8AAEUS5QEAoEiiPAAAFEmUBwCAIonyAABQJFEeAACKJMoDAECRRHkAACiSKA8AAEUS5QEAoEiiPAAAFOn/ATuvFuEdpdH8AAAAAElFTkSuQmCC" alt="" />

注意:不一定是一分为2

 package leetcode;

 import java.util.Set;

 public class WordBreak11 {
public boolean wordBreak(String s, Set<String> dict) {
if(s==null||s.length()==0||dict==null||dict.size()==0){
return false;
}
int len = s.length();
boolean[] can=new boolean[len+1];
can[0]=true;
for(int i=1;i<=len;i++){
for(int j=0;j<i;j++){
if(can[j]&&dict.contains(s.substring(j,i))){
can[i]=true;
break;
}
}
}
return can[len];
}
}

leetcode--007 word break I的更多相关文章

  1. [LeetCode] 139. Word Break 单词拆分

    Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine ...

  2. [LeetCode] 140. Word Break II 单词拆分II

    Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, add space ...

  3. 【leetcode】Word Break (middle)

    Given a string s and a dictionary of words dict, determine if s can be segmented into a space-separa ...

  4. [Leetcode Week9]Word Break II

    Word Break II 题解 题目来源:https://leetcode.com/problems/word-break-ii/description/ Description Given a n ...

  5. [Leetcode Week9]Word Break

    Word Break 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/word-break/description/ Description Given ...

  6. 【leetcode】Word Break II

    Word Break II Given a string s and a dictionary of words dict, add spaces in s to construct a senten ...

  7. Leetcode#139 Word Break

    原题地址 与Word Break II(参见这篇文章)相比,只需要判断是否可行,不需要构造解,简单一些. 依然是动态规划. 代码: bool wordBreak(string s, unordered ...

  8. leetcode 139. Word Break 、140. Word Break II

    139. Word Break 字符串能否通过划分成词典中的一个或多个单词. 使用动态规划,dp[i]表示当前以第i个位置(在字符串中实际上是i-1)结尾的字符串能否划分成词典中的单词. j表示的是以 ...

  9. LeetCode 139. Word Break单词拆分 (C++)

    题目: Given a non-empty string s and a dictionary wordDict containing a list of non-emptywords, determ ...

  10. leetcode 140. Word Break II ----- java

    Given a string s and a dictionary of words dict, add spaces in s to construct a sentence where each ...

随机推荐

  1. const与static的区别

    const就是只读的意思,只在声明中使用;const修饰的数据类型是指常类型,常类型的变量或对象的值是不能被更新的. const的作用: (1)可以定义const常量,具有不可变性. (2)便于进行类 ...

  2. 学习笔记——桥接模式Bridge

    桥接模式的目的是在设计初,就将实现与接口分离,在以后实现发生变化时,只需要改变传递的实现对象,在保持接口一致的情况,达到实现的变更. 在OperationInterface中就调用实现的方法imp.O ...

  3. 利用Hierarchy Viewer优化布局

    好久没更新博客了,趁着清明来写点什么. 今天来讲下如何使用android中提供的工具优化我们的布局.首先我们写一个最简单的框架布局. <?xml version="1.0" ...

  4. HDU 2609 How many

    最小表示法+Map或者字典树,最小表示法找了个模板,还没学习呢... #include<cstdio> #include<cstring> #include<cmath& ...

  5. haar_adaboost_cascade阅读资料

    1,AdaBoost中利用Haar特征进行人脸识别算法分析与总结1——Haar特征与积分图 2,浅谈 Adaboost 算法 3,浅析人脸检测之Haar分类器方法 4,http://wenku.bai ...

  6. opencv-jni -调试出错taking address of temporary [-fpermissive]

    今天在进行代码往安卓平台移植时,IplImage *qImg=&(IplImage)dst1;报错taking address of temporary [-fpermissive] 百度了一 ...

  7. DataSet和List<T> 泛型之间互相转换 (转载, 作者写的很好)

    /DataSet与泛型集合间的互相转换 //利用反射机制将DataTable的字段与自定义类型的公开属性互相赋值. //注意:从DataSet到IList<T>的转换,自定义类型的公开属性 ...

  8. DDMS工具使用(转)

    DDMS工具使用   一.查看进程的堆栈使用情况1.选中你要查看的进程:2.点击“ Update Heap”按钮开启该进程的该项功能,如果单独打开ddms工具,按钮名为“Show heap updat ...

  9. GB2312转unicode程序(转)

     GB2312转unicode程序   #ifndef UNICODE_H #define UNICODE_H #include <string.h> #ifdef __DEFLINUX_ ...

  10. 有关sqlitedrop数据库重建比delete方式来清空数据库更加有效率

    今天浏览stackoverflow 发现一个有趣的问题: which was more preferable as performance wise and without error cause t ...