Spark作为分布式的大数据处理框架必然或涉及到大量的作业调度,如果能够理解Spark中的调度对我们编写或优化Spark程序都是有很大帮助的;

  在Spark中存在转换操作(Transformation Operation)行动操作(Action Operation)两种;而转换操作只是会从一个RDD中生成另一个RDD且是lazy的,Spark中只有行动操作(Action Operation)才会触发作业的提交,从而引发作业调度;在一个计算任务中可能会多次调用 转换操作这些操作生成的RDD可能存在着依赖关系,而由于转换都是lazy所以当行动操作(Action Operation )触发时才会有真正的RDD生成,这一系列的RDD中就存在着依赖关系形成一个DAG(Directed Acyclc Graph),在Spark中DAGScheuler是基于DAG的顶层调度模块;

相关名词

  Application:使用Spark编写的应用程序,通常需要提交一个或多个作业;

  Job:在触发RDD Action操作时产生的计算作业

  Task:一个分区数据集中最小处理单元也就是真正执行作业的地方

  TaskSet:由多个Task所组成没有Shuffle依赖关系的任务集

  Stage:一个任务集对应的调度阶段 ,每个Job会被拆分成诺干个Stage

    

          1.1 作业调度关系图

RDD Action作业提交流程

  这里根据Spark源码跟踪触发Action操作时触发的Job提交流程,Count()是RDD中的一个Action操作所以调用Count时会触发Job提交;

  在RDD源码count()调用SparkContext的runJob,在runJob方法中根据partitions(分区)大小创建Arrays存放返回结果;

RDD.scala

/**
* Return the number of elements in the RDD.
*/
def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum SparkContext.scala def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
resultHandler: (Int, U) => Unit): Unit = { val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
}

  在SparkContext中将调用DAGScheduler的runJob方法提交作业,DAGScheduler主要任务是计算作业与任务依赖关系,处理调用逻辑;DAGScheduler提供了submitJob与runJob方法用于 提交作业,runJob方法会一直等待作业完成,submitJob则返回JobWaiter对象可以用于判断作业执行结果;

  在runJob方法中将调用submitJob,在submitJob中把提交操作放入到事件循环队列(DAGSchedulerEventProcessLoop)中;

def submitJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): JobWaiter[U] = {
......
eventProcessLoop.post(JobSubmitted(
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))
......
}

  在事件循环队列中将调用eventprocessLoop的onReceive方法;

Stage拆分

  提交作业时DAGScheduler会从RDD依赖链尾部开始,遍历整个依赖链划分调度阶段;划分阶段以ShuffleDependency为依据,当没有ShuffleDependency时整个Job 只会有一个Stage;在事件循环队列中将会调用DAGScheduler的handleJobSubmitted方法,此方法会拆分Stage、提交Stage;

 private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: ResultStage = null
......
finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
...... val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
......
val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage) submitWaitingStages()
}

调度阶段提交

  在提交Stage时会先调用getMissingParentStages获取父阶段Stage,迭代该阶段所依赖的父调度阶段如果存在则先提交该父阶段的Stage 当不存在父Stage或父Stage执行完成时会对当前Stage进行提交;

 private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
if (missing.isEmpty) {
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
}
......
}

参考资料:

http://spark.apache.org/docs/latest/

文章首发地址:Solinx

http://www.solinx.co/archives/579

Spark作业调度阶段分析的更多相关文章

  1. Spark作业调度

    Spark在任务提交时,主要存在于Driver和Executor的两个节点. (1)Driver的作用: 用于将所有要处理的RDD的操作转化为DAG,并且根据RDD DAG将JBO分割为多个Stage ...

  2. 【Spark学习】Apache Spark作业调度机制

    Spark版本:1.1.1 本文系从官方文档翻译而来,转载请尊重译者的工作,注明以下链接: http://www.cnblogs.com/zhangningbo/p/4135905.html 目录 概 ...

  3. Spark 作业调度相关术语

    作业(Job):RDD 中由行动操作所生成的一个或多个调度阶段 调度阶段(Stage):每个作业会因为 RDD 间的依赖关系拆分成多组任务集合,称为调度阶段,也叫做任务集(TaskSet).高度阶段的 ...

  4. Spark大数据处理技术

    全球首部全面介绍Spark及Spark生态圈相关技术的技术书籍 俯览未来大局,不失精细剖析,呈现一个现代大数据框架的架构原理和实现细节 透彻讲解Spark原理和架构,以及部署模式.调度框架.存储管理及 ...

  5. Spark SQL在100TB上的自适应执行实践(转载)

    Spark SQL是Apache Spark最广泛使用的一个组件,它提供了非常友好的接口来分布式处理结构化数据,在很多应用领域都有成功的生产实践,但是在超大规模集群和数据集上,Spark SQL仍然遇 ...

  6. Spark参数配置

    转自:http://hadoop1989.com/2015/10/08/Spark-Configuration/ 一.Spark参数设置 二.查看Spark参数设置 三.Spark参数分类 四.Spa ...

  7. spark总结——转载

    转载自:    spark总结 第一个Spark程序 /** * 功能:用spark实现的单词计数程序 * 环境:spark 1.6.1, scala 2.10.4 */ // 导入相关类库impor ...

  8. [转]Spark SQL2.X 在100TB上的Adaptive execution(自适应执行)实践

    Spark SQL是Apache Spark最广泛使用的一个组件,它提供了非常友好的接口来分布式处理结构化数据,在很多应用领域都有成功的生产实践,但是在超大规模集群和数据集上,Spark SQL仍然遇 ...

  9. Spark Stage 的划分

    Spark作业调度 对RDD的操作分为transformation和action两类,真正的作业提交运行发生在action之后,调用action之后会将对原始输入数据的所有transformation ...

随机推荐

  1. Atitit onvif协议获取rtsp地址播放java语言 attilx总结

    Atitit onvif协议获取rtsp地址播放java语言 attilx总结 1.1. 获取rtsp地址的算法与流程1 1.2. Onvif摄像头的发现,ws的发现机制,使用xcf类库1 2. 调用 ...

  2. 在IDEA上跑eclipse开发的J2EE项目

    Context MacOS 10.12.1 IDEA ULTIMATE 2016.2 项目使用eclipse开发 项目使用SVN进修版本管理 核心步骤 检出项目,完成基本配置 从svn检出 当项目下载 ...

  3. 正则表达式和文本挖掘(Text Mining)

    在进行文本挖掘时,TSQL中的通配符(Wildchar)显得功能不足,这时,使用“CLR+正则表达式”是非常不错的选择,正则表达式看似非常复杂,但,万变不离其宗,熟练掌握正则表达式的元数据,就能熟练和 ...

  4. Enterprise Solution 管理软件开发框架流程实战

    1 定义模块和功能 执行系统功能(SAUTSF),在系统主文件(System Master File SAMF)模块中增加功能SAMFEM,Employee Master. 给有权限的用户组分配功能S ...

  5. 【.NET深呼吸】应用上下文(AppContext)

    在.net 4.6中新增了一个类,叫AppContext,这个家伙嘛,技术含量不算高,只不过是在编程的时候可以方便用用而已.应用上下文允许定义一个标识(用字符串表示),并且在应用程序运行期间可以切换状 ...

  6. ASP.NET Core管道深度剖析(1):采用管道处理HTTP请求

    之所以称ASP.NET Core是一个Web开发平台,源于它具有一个极具扩展性的请求处理管道,我们可以通过这个管道的定制来满足各种场景下的HTTP处理需求.ASP. NET Core应用的很多特性,比 ...

  7. MAVEN学习笔记-maven的获取和安装

      windows下maven的安装步骤:      1.下载压缩包http://maven.apache.org/download.cgi选择apache-maven-3.3.9-bin.zip下载 ...

  8. spring boot(六):如何优雅的使用mybatis

    *:first-child{margin-top: 0 !important}.markdown-body>*:last-child{margin-bottom: 0 !important}.m ...

  9. React.js实现原生js拖拽效果及思考

    一.起因&思路 不知不觉,已经好几天没写博客了...近来除了研究React,还做了公司官网... 一直想写一个原生js拖拽效果,又加上近来学react学得比较嗨.所以就用react来实现这个拖 ...

  10. External Configuration Store Pattern 外部配置存储模式

    Move configuration information out of the application deployment package to a centralized location. ...