这个题目网上有很多答案,代码也很像,不排除我的。大家的思路应该都是taijan求出割边,然后找两个点的LCA(最近公共祖先),这两个点和LCA以及其他点构成了一个环,我们判断这个环上的割边有几条,我们的答案就少几个。

  有人问,这个题重边怎么办呢,重边肯定不是桥啊。额……对于这个我只能说,这个题的原始图应该是没有重边的,后来加的边可能会有重边,不过不影响我们的判断,因为我们通过标记点的方式去判的。(这个题还是应该说明一下啊,题目有点问题……)。

  其次,这个题的好玩之处来了,网上人分享的代码,居然过不了一组很简单的样例(如下),(现在大多人可能已经修正了),其实这个原因我应该是找到了,那就是dfn(出生日期)和deep(深搜的层数)的使用错误,当你使用deep的时候交换两者的值是没错的,因为我们总能让他们调整到一层上,然后他们的LCA也一定在一层上了,使用fa数组可以追溯到他们的LCA。然而如果是用dfn交换两者的值就是错误的了,因为即使你调整了他们的值满足一定的大小关系,他们也不一定在一层上,很有可能追溯到了环的外面,所以在追溯的时候很可能会多减上几条边。也就是出现了下面的样例,答案是1,有人输出了0;

  其实这个地方我一直有一个疑惑,那就是使用dfn判断的时候,最后的时候居然会出现二者不相等的情况,这与深搜的性质相违背,到现在也没找到一个样例可以说明他是正确的,我确实感觉到当判断完前两个循环的时候dfn【u】就是他们的LCA了,这个疑惑我先放到这里,便于以后解答,在以后我会主要选择记录深度的方法去做,比较好理解,比较保险(就如我下面代码里的方法)

  附:这个题还有一个解决方法,就是求双连通分量,通过判断两点是否在一个分量里判断两点之间的边是否为桥,然后再合并这两个点。求连通分量的办法一种是并查集,在判断的时候合并到一个集合里,一种是栈的储存方式,id数组,与有向图求强连通分量的方法一致。注意无向图的双连通分量不是指能否相互到达,而是指这个分量里面不含桥,所以当两个点不在一个集合中的时候,这条边一定就是桥。

6 5
1 2
2 3
2 4
3 5
4 6
1
5 6

答案:1

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define maxn 100010
int head[maxn],dfn[maxn],low[maxn],fa[maxn],deep[maxn];
int all,tot,bridge[maxn],brinum;
struct Edge
{
int to,nxt;
} edge[*maxn];
void addadge(int a,int b)
{
edge[tot].to = b;
edge[tot].nxt = head[a];
head[a] = tot++;
}
void dfs(int u,int pa)
{
low[u] = dfn[u] = ++all;
deep[u] = deep[pa] + ;
for(int i = head[u]; i != -; i = edge[i].nxt)
{
int v = edge[i].to;
if(!dfn[v])
{
fa[v] = u;
dfs(v,u);
low[u] = min(low[u],low[v]);
if(low[v] > dfn[u])
{
bridge[v] = ;
brinum++;
}
}
else if(v != pa) low[u] = min(low[u],dfn[v]);
}
}
void lca(int a,int b)
{
while(deep[a] > deep[b])
{
if(bridge[a])
{
bridge[a] = ;
brinum--;
}
a = fa[a];
}
while(deep[b] > deep[a])
{
if(bridge[b])
{
bridge[b] = ;
brinum--;
}
b = fa[b];
}
while(a != b)
{
if(bridge[a])
{
bridge[a] = ;
brinum--;
}
if(bridge[b])
{
bridge[b] = ;
brinum--;
}
a = fa[a];
b = fa[b];
}
}
int main()
{
int n,m,q,a,b,ca = ;
while(~scanf("%d%d",&n,&m))
{
if(!n && !m) break;
for(int i = ; i <= n; i++)
{
head[i] = -;
dfn[i] = ;
low[i] = ;
fa[i] = i;
deep[i] = ;
bridge[i] = ;
}
tot = ;
all = ;
brinum = ;
for(int i = ; i < m; i++)
{
scanf("%d%d",&a,&b);
addadge(a,b);
addadge(b,a);
}
dfs(,);
scanf("%d",&q);
printf("Case %d:\n",++ca);
while(q--)
{
scanf("%d%d",&a,&b);
lca(a,b);
printf("%d\n",brinum);
}
puts("");
}
return ;
}

POJ 1236 Network of Schools(tarjan算法 + LCA)的更多相关文章

  1. Poj 1236 Network of Schools (Tarjan)

    题目链接: Poj 1236 Network of Schools 题目描述: 有n个学校,学校之间有一些单向的用来发射无线电的线路,当一个学校得到网络可以通过线路向其他学校传输网络,1:至少分配几个 ...

  2. POJ 1236 Network of Schools (Tarjan + 缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12240   Accepted: 48 ...

  3. POJ 1236 Network of Schools Tarjan缩点

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22729   Accepted: 89 ...

  4. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  5. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

  6. [tarjan] poj 1236 Network of Schools

    主题链接: http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K To ...

  7. poj 1236 Network of Schools(连通图入度,出度为0)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  8. poj 1236 Network of Schools(又是强连通分量+缩点)

    http://poj.org/problem?id=1236 Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  9. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  10. poj 1236 Network of Schools(tarjan+缩点)

    Network of Schools Description A number of schools are connected to a computer network. Agreements h ...

随机推荐

  1. Newtonsoft.Json使用

    SkuBean sb = (SkuBean)Newtonsoft.Json.JsonConvert.DeserializeObject(jobj.ToString(), typeof(SkuBean) ...

  2. asp下sha1加密函数

    sha1.asp文件 <script language="javascript" type="text/javascript" runat="s ...

  3. arguments对象,caller 和 callee

    arguments对象是比较特别的一个对象,arguments非常类似Array,但实际上又不是一个Array实例. 它指的是函数对象里的参数,且只能在函数内部使用. 使用 检测函数的参数个数,引用属 ...

  4. db2安装要设置tcp、ip

    1.注册表变量DB2COMM是否已经设置了值,是什么级别的?db2set -all | grep -i "DB2COMM" (in unix like os)db2set -all ...

  5. CocoaPods安装、卸载、使用说明(Mac ox 10.11+)

    一.全新安装前,先检查是否有安装残留 由于Mac 10.11更改了安全机制,所以cocoapods得安装和卸载命令也有所改变, 1.如果之前装过cocopods,最好先卸载掉,卸载命令: $ sudo ...

  6. fragement生命周期

    转自http://www.cnblogs.com/mybkn/ 你的fragment们可以向activity的菜单(按Manu键时出现的东西)添加项,同时也可向动作栏(界面中顶部的那个区域)添加条目, ...

  7. iOSstoryboard xib下label怎么自适应宽度高度

    先看需求:两个Label,要求蓝色的label紧跟在红色的label文字后面 ok首选正常添加约束 红色的Label添加宽度,高度,左边,上边约束 蓝色的Label添加宽度,高度,左边,和红色的水平对 ...

  8. qtp中vb脚本,经典收藏

    1.在脚本运行过程中屏蔽鼠标键盘输入 SystemUtil.BlockInput ‘开始处 这里是你的脚本 SystemUtil.UnblockInput ’结尾处 ----------------- ...

  9. svn“Previous operation has not finished; run 'cleanup' if it was interrupted

    今天碰到了个郁闷的问题,svn执行clean up命令时报错“Previous operation has not finished; run 'cleanup' if it was interrup ...

  10. Jersey客户端API调用REST风格的Web服务

    Jersey 客户端 API 基础 jersey-1.14.jar 密码: cxug 要开始使用 Jersey 客户端 API,你首先需要创建一个 com.sun.jersey .api.client ...