AOE网上的关键路径

Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描写叙述

一个无环的有向图称为无环图(Directed
Acyclic Graph),简称DAG图。 

    AOE(Activity
On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,例如以下图所看到的:

                                     

    如上所看到的,共同拥有11项活动(11条边),9个事件(9个顶点)。整个project仅仅有一个開始点和一个完毕点。即仅仅有一个入度为零的点(源点)和仅仅有一个出度为零的点(汇点)。

    关键路径:是从開始点到完毕点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所看到的,1 到2 到 5到7到9是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18。

输入

    这里有多组数据,保证不超过10组,保证仅仅有一个源点和汇点。输入一个顶点数n(2<=n<=10000),边数m(1<=m
<=50000),接下来m行,输入起点sv,终点ev,权值w(1<=sv,ev<=n,sv
!= ev,1<=w <=20)。数据保证图连通。

输出

    关键路径的权值和,而且从源点输出关键路径上的路径(假设有多条,请输出字典序最小的)。

演示样例输入

9 11
1 2 6
1 3 4
1 4 5
2 5 1
3 5 1
4 6 2
5 7 9
5 8 7
6 8 4
8 9 4
7 9 2

演示样例输出

18
1 2
2 5
5 7
7 9
最长路+记录字典序最小路径(即假设有多条最长路输出字典序最小的那条 比方 1->2->4 和 1->3->4 都符合最长路,那么输出1->2->4 ) 主要实现就是在松弛时,当dis[v]==dis[u]+w 时,推断一下路径的字典序来决定是否更新路径,眼下还是仅仅会暴力推断QAQ
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cctype>
#include <cstdlib>
#include <algorithm>
#include <set>
#include <vector>
#include <string>
#include <cmath>
#include <map>
#include <queue>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
int s1[10010], s2[10010], ans[10010], dis[10010], in[10010], out[10010], path[10010], n, m, s, e;
bool vis[10010];
vector <pair<int, int> > eg[50010];
bool ok(int u, int v)
{
int p = v, num1 = 0;
s1[num1++] = v; while (path[p] != -1) {
s1[num1++] = path[p];
p = path[p];
} p = u;
int num2 = 0;
s2[num2++] = v;
s2[num2++] = u; while (path[p] != -1) {
s2[num2++] = path[p];
p = path[p];
} int i = num1 - 1, j = num2 - 1; while (i >= 0 && j >= 0) {
if (s1[i] > s2[j]) {
return 1;
} i--;
j--;
} return 0;
}
void spfa()
{
queue <int> Q; for (int i = 1; i <= n; i++) {
dis[i] = -INF;
} dis[s] = 0;
Q.push(s); while (!Q.empty()) {
int u = Q.front();
Q.pop();
vis[u] = 0; for (int i = 0; i < eg[u].size(); i++) {
int v = eg[u][i].first;
int w = eg[u][i].second; if (dis[v] < dis[u] + w) {
dis[v] = dis[u] + w;
path[v] = u; if (!vis[v]) {
vis[v] = 1;
Q.push(v);
}
} else
if (dis[v] == dis[u] + w && ok(u, v)) { path[v] = u ; if (!vis[v]) {
vis[v] = 1;
Q.push(v);
}
}
}
} }
void print()
{
int p = e, num = 0; while (path[p] != -1) {
ans[num++] = path[p];
p = path[p];
} printf("%d\n", dis[e]); for (int i = num - 1; i > 0; i--) {
printf("%d %d\n", ans[i], ans[i - 1]);
} printf("%d %d\n", ans[0], e);
}
int main()
{
int u, v, c; while (~scanf("%d %d", &n, &m)) {
for (int i = 0; i <= n; i++) {
eg[i].clear();
} memset(in, 0, sizeof(in));
memset(out, 0, sizeof(out));
memset(vis, 0, sizeof(vis));
memset(path, -1, sizeof(path)); while (m--) {
scanf("%d%d%d", &u, &v, &c);
eg[u].push_back(make_pair(v, c));
in[v]++;
out[u]++;
} for (int i = 1; i <= n; i++) {
if (!in[i]) {
s = i;
} if (!out[i]) {
e = i;
}
} spfa();
print();
} return 0;
}



SDUT 2498-AOE网上的关键路径(spfa+字典序路径)的更多相关文章

  1. SDUT 2498 AOE网上的关键路径

    AOE网上的关键路径 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 一个无环的有向图称为无 ...

  2. sdut AOE网上的关键路径(spfa+前向星)

    http://acm.sdut.edu.cn/sdutoj/showproblem.php?pid=2498&cid=1304 题目描述 一个无环的有向图称为无环图(Directed Acyc ...

  3. AOE网上的关键路径(最长路径 + 打印路径)

    题目描述 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图.     AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG ...

  4. 数据结构实验之图论十一:AOE网上的关键路径【Bellman_Ford算法】

    Problem Description 一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图.     AOE(Activity On Edge)网:顾名思义,用边 ...

  5. sdut 2498【aoe 网上的关键路径】

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2498 代码超时怎么破: #include< ...

  6. SDUTOJ 2498 数据结构实验之图论十一:AOE网上的关键路径

    题目链接:http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Index/problemdetail/pid/2498.html 题目大意 略. 分析 ...

  7. SDUT-2498_AOE网上的关键路径

    数据结构实验之图论十一:AOE网上的关键路径 Time Limit: 2000 ms Memory Limit: 65536 KiB Problem Description 一个无环的有向图称为无环图 ...

  8. AOE网与关键路径简介

    前面我们说过的拓扑排序主要是为解决一个工程能否顺序进行的问题,但有时我们还需要解决工程完成需要的最短时间问题.如果我们要对一个流程图获得最短时间,就必须要分析它们的拓扑关系,并且找到当中最关键的流程, ...

  9. AOE网络的关键路径问题

    关于AOE网络的基本概念可以参考<数据结构>或者search一下就能找到,这里不做赘述. 寻找AOE网络的关键路径目的是:发现该活动网络中能够缩短工程时长的活动,缩短这些活动的时长,就可以 ...

随机推荐

  1. [置顶] ※数据结构※→☆线性表结构(list)☆============双向链表结构(list double)(三)

    双向链表也叫双链表,是链表的一种,它的每个数据结点中都有两个指针,分别指向直接后继和直接前驱.所以,从双向链表中的任意一个结点开始,都可以很方便地访问它的前驱结点和后继结点. ~~~~~~~~~~~~ ...

  2. NGUI研究之在Unity中使用贝塞尔曲线

    鼎鼎大名的贝塞尔曲线相信大家都耳熟能详.这两天由于工作的原因须要将贝塞尔曲线加在project中.那么我迅速的研究了一下成果就分享给大家了哦.贝塞尔曲线的原理是由两个点构成的随意角度的曲线,这两个点一 ...

  3. Keepalived+LVS+Nginx负载均衡之高可用

    Keepalived+LVS+Nginx负载均衡之高可用 上一篇写了nginx负载均衡,此篇实现高可用(HA).系统整体设计是采用Nginx做负载均衡,若出现Nginx单机故障,则导致整个系统无法正常 ...

  4. java中HashMap在多线程环境下引起CPU100%的问题解决(转)

    最近项目中出现了Tomcat占用CPU100%的情况,原以为是代码中出现死循环,后台使用jstack做了dump,发现是系统中不合理使用HashMap导致出现了死循环(注意不是死锁). 产生这个死循环 ...

  5. Driver 初始化顺序

    Linux系统使用两种方式去加载系统中的模块:动态和静态. 静态加载:将所有模块的程序编译到Linux内核中,由do_initcall函数加载 核心进程(/init/main.c)kernel_ini ...

  6. HTML4和HTML5之间10主要差异

    HTML5恐怕要让部分网页工作者抓狂了,HTML5将採用标准的XML语法格式,这对代码的规范要求很高. HTML5是最新的HTML标准.尽管还在制定.但或迟或早,全部的web程序猿都会发现须要使用到这 ...

  7. 完美去除WPF按钮的边框

    主页面背影图片, 添加5个功能按钮,并设置按钮的Background和BorderBrush为Transparent,好像没有问题,运行效果 不仅有一个发光的边框,而且当鼠标经过时,按钮就不在透明, ...

  8. 数据库的group by 分组

    有一个表 查询结果为 用下面的代码写 select COUNT( case NumName when 'a' then NumName end ) as 'aaa', COUNT( case NumN ...

  9. Why 使用TLS记录封装IP层VPN IS A Bad Idea

    一个很自然的想法,使用TLS套餐一IP数据报实现第三层VPN.这种想法必须经过深思熟虑的,但不幸的是,.这是一个错误的想法.有文章<Why TCP Over TCP Is A Bad Idea& ...

  10. Oracle SQL Lesson (5) - 使用组函数输出聚合数据

    组函数AVGCOUNTMAXMINSUMVARIANCE:方差STDDEV:标准差 SELECT AVG(salary), MAX(salary), MIN(salary), SUM(salary)F ...