作者:桂。

时间:2017-01-17  23:41:13

链接:http://www.cnblogs.com/xingshansi/articles/6294111.html

声明:转载请注明出处,谢谢。


前言

信号处理一个重要的关系就是时域与频域的关系,本专题为:信号处理的频域处理

本文主要讲述信号从时域连续信号到数字信号的变化,以及对应的频域关系,内容较为基础,公式不作具体推导。

理论分析

(图1 信号的时频对应关系)

  A.傅里叶变换(FFT)

由图1(a)可以看出,连续非周期时域连续信号,对应频域信号仍然是连续信号。

对应的变换关系为:

时域——>频域

$F(\omega) = \int^{+\infty}_{-\infty} f(t) e^{-j\omega t}dt$

频域——>频域

$f(t) = \frac{1}{2\pi}\int^{+\infty}_{-\infty} F(\omega) e^{j\omega t}dt$

图1(b)为傅里叶级数,此处不作描述。

  B.离散时间傅里叶变换(DTFT)

图1(c)表示对图1(a)在时域上进行采样,得到时域的离散信号,对应的频域信号仍然是连续信号,并且是以采样率为周期的周期信号。

对应的变换关系为:

时域——>频域

$F(e^{j\omega}) = \sum^{+\infty}_{-\infty} f(n) e^{-j\omega n}$

频域——>时域

$f(n) =\frac{1}{2\pi} \sum^{+\pi}_{-\pi} F(e^{j\omega}) e^{j\omega n}$

  C.离散傅里叶变换(FFT)

图1(d)表述对图1(c)在频域上进行采样,得到的时域离散信号,对应的频域也变为离散信号。

对应的变换关系为:

时域——>频域

$F(k) = \sum^{N-1}_{n=0} f(n) e^{\frac{-j2\pi kn}{N}}$

频域——>时域

$f(n) = \frac{1}{N}\sum^{N-1}_{k=0} F(k) e^{\frac{j2\pi kn}{N}}$

三种变换的关系总结一下,关系如图2所示。至于FFT,是DFT的蝶形运算,本质相同,仅仅是运算不同,这里只是分析信号变换的对应关系,FFT的原理不作讨论。

(图2 三种变换的对应关系)

信号处理——傅里叶变换(FT-DTFT-DFT)的更多相关文章

  1. 傅里叶变换 - Fourier Transform

    傅里叶级数 傅里叶在他的专著<热的解析理论>中提出,任何一个周期函数都可以表示为若干个正弦函数的和,即: \[f(t)=a_0+\sum_{n=1}^{\infty}(a_ncos(n\o ...

  2. FS,FT,DFS,DTFT,DFT,FFT的联系和区别 数字信号处理

    DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...

  3. FS,FT,DFS,DTFT,DFT,FFT的联系和区别

    DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...

  4. 灰度图像--频域滤波 傅里叶变换之连续信号傅里叶变换(FT)

    学习DIP第20天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不 ...

  5. 【算法•日更•第四十二期】离散傅里叶变换(DFT)

    ▎前言 小编相当的菜,这篇博客难度稍高,所以有些可能不会带有证明,博客中更多的是定义. 我们将要学到的东西: 复数 暴力多项式乘法 DFT 当然,小编之前就已经写过一篇博客了,主要讲的就是基础多项式, ...

  6. Opencv 实现图像的离散傅里叶变换(DFT)、卷积运算(相关滤波)

    我是做Tracking 的,对于速度要求非常高.发现傅里叶变换能够使用. 于是学习之. 核心: 最根本的一点就是将时域内的信号转移到频域里面.这样时域里的卷积能够转换为频域内的乘积! 在分析图像信号的 ...

  7. 研究傅里叶变换的一本好书<<快速傅里叶变换及其C程序>>

    快速傅里叶变换及其C程序 <快速傅里叶变换及其C程序>是中国科学技术大学出版社出版的.本书系统地介绍了傅里叶变换的理论和技术,内容包括傅里叶变换(FT)的定义.存在条件及其性质,离散傅里叶 ...

  8. 快速傅里叶变换(FFT)

    一.FFT的意义 DFT虽然实现了FT的计算机计算,但是计算量大,不适合实时的数字信号处理.FFT算法的出现,使DFT的计算效率更高,速度更快. 二.FFT与DFT的关系 从FT到DFT经过了数字角频 ...

  9. 傅里叶变换通俗解释及快速傅里叶变换的python实现

    通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete ...

随机推荐

  1. Voilin 之 握弓

    握弓要像拿杯子,手要圆:整个手型是左倾.

  2. JS基础知识:Javascript事件触发列表

    Javascript是一种由Netscape的LiveScript发展而来的原型化继承的基于对象的动态类型的区分大小写的客户端脚本语言,主要目的是为了解决服务器端语言. JavaScript使我们有能 ...

  3. Intent的属性及Intent-filter配置——Action、Category属性与intent-filter属性

    Intent的Action.Category属性都是一个普通的字符串,其中Action代表该Intent所要完成的一个抽象“动作”,而Category则用于为Action增加额外的附加列别的信息.通常 ...

  4. Android事件处理概述

    不管是桌面应用还是手机应用程序,面对最多的就是用户,经常需要处理的就是用户的动作——也就是需要为用户动作提供响应,这种为用户动作提供响应的机制就是事件处理. Android提供了强大的事件处理机制,包 ...

  5. PHP Memcached 实现简单数据库缓存

    Memcache常用方法 Memcache::add — 添加一个值,如果已经存在,则返回false Memcache::addServer — 添加一个可供使用的服务器地址 Memcache::cl ...

  6. Select与Epoll比较

    一.问题引出 联系区别 问题的引出,当需要读两个以上的I/O的时候,如果使用阻塞式的I/O,那么可能长时间的阻塞在一个描述符上面,另外的描述符虽然有数据但是不能读出来,这样实时性不能满足要求,大概的解 ...

  7. Word常用实用知识1

    Word常用实用知识1 纯手打,可能有错别字,使用的版本是office Word 2013 转载请注明出处,谢谢. 快速输入日期(含格式) [插入]--[日期]   快速输入日期和时间(快捷键) 快速 ...

  8. POJ1144(割点)

    Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12551   Accepted: 5771 Descript ...

  9. HDU4496(并查集)

    D-City Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Subm ...

  10. canvas小程序-快跑程序员

    canvas不用说html5带来的好东西,游戏什么的,么么哒 记得有一天玩手机游戏,就是一个跳跃过柱子那种,其实元素很简单啊,app能开发,借助html5 canvas也可以啊, 于是就开始了. -- ...