【威佐夫博奕】 betty定理 poj 1067
Description
Input
Output
Sample Input
2 1 8 4 4 7
Sample Output
0 1 0
贝蒂定理 设a、b是正无理数且 1/a +1/b =1。记P={ [na] | n为任意的正整数},Q={ [nb] | n 为任意的正整数},([x]'指的是取x的整数部分)则P与Q是Z+的一个划分,即P∩Q为空集且P∪Q为正整数集合Z+。
根据betty定理,对于1/A+1/B=1,必有
Ua={trunc(A*k),k为正整数}
Ub={trunc(B*k),k为正整数}
Ua与Ub的并集构成正整数集且Ua于Ub不相交
所以设某个必败态的第一项为trunc(A*k),第二项为trunc(A*k+k)=trunc((A+1)*k)
则1/A+1/(A+1)=1,求得A为(sqrt(5)+1)/2;
发信人: charnugagoo (Daecharno]Yu[), 信区: ACM_ICPC
标 题: Re: poj 1067一道神奇的数学题
发信站: 北邮人论坛 (Thu Jul 16 10:43:30 2009), 站内
Source Code
Problem: 1067 User: yu_zhuoran
Memory: 384K Time: 0MS
Language: G++ Result: Accepted
Source Code
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
double d = sqrt(5.0);
int m,n,t;
while(scanf("%d%d", &m, &n) != EOF)
{
if(m > n)
{
t = m;
m = n;
n = t;
}
t = n - m;
if(m == (int)(t*( + d) / ))
printf("0\n");
else
printf("1\n");
}
return ;
}
发信人: charnugagoo (Daecharno]Yu[), 信区: ACM_ICPC
标 题: Re: poj 1067一道神奇的数学题
发信站: 北邮人论坛 (Thu Jul 16 12:08:22 2009), 站内
威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是: (0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有
如下三条性质:
1。任何自然数都包含在一个且仅有一个奇异局势中。
由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。
2。任意操作都可将奇异局势变为非奇异局势。
事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
3。采用适当的方法,可以将非奇异局势变为奇异局势。
假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk,那么,取走b - bk个物体,即变为奇异局势;如果 a = ak , b < bk ,则同时从两堆中拿走 ak - ab - ak个物体,变为奇异局势( ab - ak , ab - ak+ b - ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a - ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走 b - bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b - aj 即可。
从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。
那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...,n 方括号表示取整函数)
奇 妙的是其中出现了黄金分割数(1+√5)/2 = 1。618...,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a =[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。
【威佐夫博奕】 betty定理 poj 1067的更多相关文章
- Poj 1067 取石子游戏(NIM,威佐夫博奕)
一.Description 有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子. ...
- 博弈论基础知识: 巴什博奕+斐波那契博弈+威佐夫博奕+尼姆博弈(及Staircase)(转)
(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜.若(m+1) | n,则先手必败,否则先手必胜.显然,如果n=m+1 ...
- hdu 2177 取(2堆)石子游戏(威佐夫博奕)
题目链接:hdu 2177 这题不是普通的 Nim 博弈,我想它应该是另一种博弈吧,于是便推 sg 函数打了个 20*20 的表来看,为了方便看一些,我用颜色作了标记,打表代码如下: #include ...
- hdu 2177(威佐夫博奕)
题意:容易理解,在威佐夫博奕的基础上新增加了一条要求:就是如果在赢得条件下,输出第一步怎么走. 分析:使用暴力判断,详细见代码. 代码: #include<stdio.h> #includ ...
- hdu 1527(威佐夫博奕)
题意:容易理解. 分析:威佐夫博奕的模板题. 代码实现: #include<stdio.h> #include<string.h> #include<math.h> ...
- poj1067威佐夫博奕
取石子游戏 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 31490 Accepted: 10374 Descripti ...
- 博弈---威佐夫博奕(Wythoff Game)
这个写的不错 威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同 时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜. 这种情况下是颇为复杂 ...
- 新疆大学ACM-ICPC程序设计竞赛五月月赛(同步赛)- chess(威佐夫博奕)
---恢复内容开始--- 链接:https://www.nowcoder.com/acm/contest/116/G来源:牛客网 题意:一个棋盘,老王和小人下棋,棋子只能往下或者往左或者往左下走,小人 ...
- HDU 5973 Aninteresting game 威佐夫博奕(Wythoff Game)
HDU 5973:http://acm.hdu.edu.cn/showproblem.php?pid=5975 题意: 有两堆石子,每次可以从一堆石子中取任意个,或者从两堆石子中取相同个数的石子.两个 ...
随机推荐
- 彻底卸载 postgreSQL .etc
sudo apt-get --purge autoremove postgresql*
- maven项目构建
Maven是apache的一个开源项目.是一个用来把源代码构建成可发布的构件的工具. Maven的功能非常强大,可以认为是一个项目管理工具,不仅仅是一个构建工具. Maven本身的核心很小,但是可以在 ...
- apt-get 安装路径
apt-get安装目录和安装路径:apt-get 下载后,软件所在路径是:/var/cache/apt/archivesubuntu 默认的PATH为PATH=/home/brightman/bin: ...
- (转)Java程序员应该了解的10个面向对象设计原则
面向对象设计原则是OOPS(Object-Oriented Programming System,面向对象的程序设计系统)编程的核心,但大多数Java程序员追逐像Singleton.Decorator ...
- 使用SQL 从表中取记录
SQL 的主要功能之一是实现数据库查询. 你使用查询来取得满足特定条件的信息. 一个简单的表查询实例 SQL 查询的句法非常简单.假设有一个名为email_table 的表,包含名字和地址两个字段,要 ...
- 1、java面试
1.为什么用单例而不用static 答案:首先你要明白static是在什么时候初始化的,其设计意图是什么,单例就是我们运行的当前虚拟机中有且只有一个需要的对象,不存在重复.static是给类静态成员变 ...
- HDU 2955 Robberies(01背包)
Robberies Problem Description The aspiring Roy the Robber has seen a lot of American movies, and kno ...
- CEdit实现文本换行
CEdit控件若要在字符串中插入换行字符("\r\n")实现换行效果,必须指定两个风格 ES_MULTILINE和ES_WANTRETURN. 1: DWORD dwStyle = ...
- 用CMD开启、关闭软件
关闭 (正常) taskkill /IM 1.100.exe 开启 : "路径"
- def语句常见错误
自觉不才,使用def语句时容易出现以下错误, 参考: 习题—25 http://www.2cto.com/shouce/Pythonbbf/ex25.html def add(): print &qu ...