ZOJ 2675 Little Mammoth(计算几何)
圆形与矩形截面的面积
三角仍然可以做到这一点
代码:
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std; const double eps = 1e-8;
const double pi = acos(-1.0); int dcmp(double x)
{
if(x > eps) return 1;
return x < -eps ? -1 : 0;
} struct Point
{
double x, y;
Point(){x = y = 0;}
Point(double a, double b)
{x = a, y = b;}
inline void read()
{scanf("%lf%lf", &x, &y);}
inline Point operator-(const Point &b)const
{return Point(x - b.x, y - b.y);}
inline Point operator+(const Point &b)const
{return Point(x + b.x, y + b.y);}
inline Point operator*(const double &b)const
{return Point(x * b, y * b);}
inline double dot(const Point &b)const
{return x * b.x + y * b.y;}
inline double cross(const Point &b, const Point &c)const
{return (b.x - x) * (c.y - y) - (c.x - x) * (b.y - y);}
inline double Dis(const Point &b)const
{return sqrt((*this - b).dot(*this - b));}
inline bool InLine(const Point &b, const Point &c)const//三点共线
{return !dcmp(cross(b, c));}
inline bool OnSeg(const Point &b, const Point &c)const//点在线段上,包含端点
{return InLine(b, c) && (*this - c).dot(*this - b) < eps;}
}; inline double min(double a, double b)
{return a < b ? a : b;}
inline double max(double a, double b)
{return a > b ? a : b;}
inline double Sqr(double x)
{return x * x;}
inline double Sqr(const Point &p)
{return p.dot(p);} Point LineCross(const Point &a, const Point &b, const Point &c, const Point &d)
{
double u = a.cross(b, c), v = b.cross(a, d);
return Point((c.x * v + d.x * u) / (u + v), (c.y * v + d.y * u) / (u + v));
} double LineCrossCircle(const Point &a, const Point &b, const Point &r,
double R, Point &p1, Point &p2)
{
Point fp = LineCross(r, Point(r.x + a.y - b.y, r.y + b.x - a.x), a, b);
double rtol = r.Dis(fp);
double rtos = fp.OnSeg(a, b) ? rtol : min(r.Dis(a), r.Dis(b));
double atob = a.Dis(b);
double fptoe = sqrt(R * R - rtol * rtol) / atob;
if(rtos > R - eps) return rtos;
p1 = fp + (a - b) * fptoe;
p2 = fp + (b - a) * fptoe;
return rtos;
} double SectorArea(const Point &r, const Point &a, const Point &b, double R)
//不大于180度扇形面积。r->a->b逆时针
{
double A2 = Sqr(r - a), B2 = Sqr(r - b), C2 = Sqr(a - b);
return R * R * acos((A2 + B2 - C2) * 0.5 / sqrt(A2) / sqrt(B2)) * 0.5;
} double TACIA(const Point &r, const Point &a, const Point &b, double R)
//TriangleAndCircleIntersectArea。逆时针,r为圆心
{
double adis = r.Dis(a), bdis = r.Dis(b);
if(adis < R + eps && bdis < R + eps) return r.cross(a, b) * 0.5;
Point ta, tb;
if(r.InLine(a, b)) return 0.0;
double rtos = LineCrossCircle(a, b, r, R, ta, tb);
if(rtos > R - eps) return SectorArea(r, a, b, R);
if(adis < R + eps) return r.cross(a, tb) * 0.5 + SectorArea(r, tb, b, R);
if(bdis < R + eps) return r.cross(ta, b) * 0.5 + SectorArea(r, a, ta, R);
return r.cross(ta, tb) * 0.5 +
SectorArea(r, a, ta, R) + SectorArea(r, tb, b, R);
} const int N = 505; Point p[N], o; double SPICA(int n, Point r, double R)//SimplePolygonIntersectCircleArea
{
int i;
double res = 0, if_clock_t;
for(i = 0; i < n; ++ i)
{
if_clock_t = dcmp(r.cross(p[i], p[(i + 1) % n]));
if(if_clock_t < 0) res -= TACIA(r, p[(i + 1) % n], p[i], R);
else res += TACIA(r, p[i], p[(i + 1) % n], R);
}
return fabs(res);
} double r; int main() {
int bo = 0;
while (~scanf("%lf%lf%lf", &o.x, &o.y, &r)) {
if (bo) printf("\n");
else bo = 1;
double x1, y1, x2, y2;
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
if (x1 > x2) swap(x1, x2);
if (y1 > y2) swap(y1, y2);
p[0] = Point(x1, y1);
p[1] = Point(x1, y2);
p[2] = Point(x2, y2);
p[3] = Point(x2, y1);
printf("%.10f\n", SPICA(4, o, r));
}
return 0;
}
版权声明:本文博客原创文章,博客,未经同意,不得转载。
ZOJ 2675 Little Mammoth(计算几何)的更多相关文章
- ZOJ 1696 Viva Confetti 计算几何
计算几何:按顺序给n个圆覆盖.问最后能够有几个圆被看见.. . 对每一个圆求和其它圆的交点,每两个交点之间就是可能被看到的圆弧,取圆弧的中点,往外扩展一点或者往里缩一点,从上往下推断有没有圆能够盖住这 ...
- zoj 3537 区间dp+计算几何
题意:给定n个点的坐标,先问这些点是否能组成一个凸包,如果是凸包,问用不相交的线来切这个凸包使得凸包只由三角形组成,根据costi, j = |xi + xj| * |yi + yj| % p算切线的 ...
- ACM计算几何题目推荐
//第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...
- July 【补题】
A(zoj 3596) bfs,记忆搜都可以, 按余数来记录状态. B(zoj 3599) 博弈,跳过 C(zoj 3592) 简单dp,题意不好懂 D(zoj 3602) 子树哈希, 对根的左右儿子 ...
- ZOJ 3157 Weapon --计算几何+树状数组
题意:给一些直线,问这些直线在直线x=L,x=R之间有多少个交点. 讲解见此文:http://blog.sina.com.cn/s/blog_778e7c6e0100q64a.html 首先将直线分别 ...
- ZOJ 3203 Light Bulb (三分+计算几何)
B - Light Bulb Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submit ...
- ZOJ 1081 Within(点是否在多边形内)| 计算几何
ZOJ 1081 Within 我使用的是"射线法":从该点出发,作一条向左的水平射线,与多边形的边的交点有奇数个则点在多边形内. 需要注意的点: 如果点在多边形的边上特判. 考虑 ...
- zoj 1081:Points Within(计算几何,判断点是否在多边形内,经典题)
Points Within Time Limit: 2 Seconds Memory Limit: 65536 KB Statement of the Problem Several dra ...
- zoj 3716 Ribbon Gymnastics【神奇的计算几何】
题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3716 来源:http://acm.hust.edu.cn/vjudg ...
随机推荐
- 【SSH进阶之路】一步步重构容器实现Spring框架——彻底封装,实现简单灵活的Spring框架(十一)
文件夹 [SSH进阶之路]一步步重构容器实现Spring框架--从一个简单的容器開始(八) [SSH进阶之路]一步步重构容器实现Spring框架--解决容器对组件的"侵入 ...
- POJ 1699 Best Sequence (DFS+预处理)
意甲冠军:看图片是晶莹剔透的,正确的, N连接到第一序列(同样的序列部分).总序列获得最短. 主题链接:http://poj.org/problem?id=1699 ~~~~ 思路就是:将N个序列首尾 ...
- UVA - 10714 Ants
最多时间就是每仅仅蚂蚁选择最久的爬行方式 最少时间就是每仅仅蚂蚁选择最快地爬行方式 #include<iostream> #include<map> #include<s ...
- WP8关于对地图开发的改进
原文:WP8关于对地图开发的改进 微软在2012年6月21日 发布了 Windows Phone 8的更新.带来大量的功能更新和全新的SDK.作为重头戏的部分是引入了 C++ 和 DirectX,支持 ...
- 使用IronPython给.Net程序
使用IronPython给.Net程序加点料 开发的时候,经常被策划频繁变动的方案而苦恼.这时候就想要加入点动态语言来辅助一下. 在考虑用动态语言之前也曾想过使用动态加载dll的方式,实现基础接口来调 ...
- windows cmd命令行下创建文件和文件夹
在window下无法通过 右键=>新建 命令来创建以点开头的文件和文件夹 比如 .log ,会提示必须输入文件名. 可以通过命令行来创建 新建文件夹 mkdir .vs 新建文件 type NU ...
- WPF六个控制概述
在线演示:http://v.youku.com/v_show/id_XNzA0NjU1Mjk2.html 清晰版视频+代码下载:http://115.com/lb/5lbcftnrfo9s 一.简单介 ...
- 十依据一个有用的算法来找到最小(最大)的k的数量-线性搜索算法
例如:进入1.2.3,4,5,6.7.8此8数字,最小的4图的1,2,3,4. 思路1:最easy想到的方法:先对这个序列从小到大排序.然后输出前面的最小的k个数就可以.假设选择高速排序法来进行排序, ...
- SharePoint 2013 禁用搜索服务
原文:SharePoint 2013 禁用搜索服务 前言,在SharePoint2013中,对于硬件需求的提升,让我们虚机里安装总是一筹莫展,尤其开启了搜索服务以后,对于内存的消耗就更加严重,尤其对于 ...
- 64位sql server 如何使用链接服务器连接Access
原文:64位sql server 如何使用链接服务器连接Access 测试环境 操作系统版本:Windows Server 2008 r2 64位 数据库版本:Sql Server 2005 64位 ...