scala中java并发编程
Runnable/Callable
Runnable只有一个没有返回值的方法
1
2
3
|
trait Runnable { def run(): Unit } |
Callable的方法和run类似,只不过它有一个返回值
1
2
3
|
trait Callable[V] { def call(): V } |
线程
Scala的并发是建立在Java的并发模型上的。
在Sun的JVM上,对于一个IO密集型的任务,我们可以在单机上运行成千上万的线程。
Thread是通过Runnable构造的。要运行一个Runnable的run方法,你需要调用对应线程的start
方法。
1
2
3
4
5
6
7
8
9
|
scala> val hello = new Thread( new Runnable { def run() { println( "hello world" ) } }) hello: java.lang.Thread = Thread[Thread- 3 , 5 ,main] scala> hello.start hello world |
当你看见一个实现Runnable的类,你应该明白它会被放到一个线程里去执行的。
一段单线程的代码
下面是一段代码片段,它可以运行,但是会有问题。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
import java.net.{Socket, ServerSocket} import java.util.concurrent.{Executors, ExecutorService} import java.util.Date class NetworkService(port: Int, poolSize: Int) extends Runnable { val serverSocket = new ServerSocket(port) def run() { while ( true ) { // 这里会阻塞直到有连接进来 val socket = serverSocket.accept() ( new Handler(socket)).run() } } } class Handler(socket: Socket) extends Runnable { def message = (Thread.currentThread.getName() + "\n" ).getBytes def run() { socket.getOutputStream.write(message) socket.getOutputStream.close() } } ( new NetworkService( 2020 , 2 )).run |
每个请求都会把当前线程的名称main
作为响应。
这段代码最大的问题在于一次只能够响应一个请求!
你可以对每个请求都单独用一个线程来响应。只需要把
1
|
( new Handler(socket)).run() |
改成
1
|
( new Thread( new Handler(socket))).start() |
但是如果你想要复用线程或者对于线程的行为要做一些其他的控制呢?
Executors
随着Java 5的发布,对于线程的管理需要一个更加抽象的接口。
你可以通过Executors
对象的静态方法来取得一个ExecutorService
对象。这些方法可以让你使用各种不同的策略来配置一个ExecutorService
,例如线程池。
下面是我们之前的阻塞式网络服务器,现在改写成可以支持并发请求。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
import java.net.{Socket, ServerSocket} import java.util.concurrent.{Executors, ExecutorService} import java.util.Date class NetworkService(port: Int, poolSize: Int) extends Runnable { val serverSocket = new ServerSocket(port) val pool: ExecutorService = Executors.newFixedThreadPool(poolSize) def run() { try { while ( true ) { // This will block until a connection comes in. val socket = serverSocket.accept() pool.execute( new Handler(socket)) } } finally { pool.shutdown() } } } class Handler(socket: Socket) extends Runnable { def message = (Thread.currentThread.getName() + "\n" ).getBytes def run() { socket.getOutputStream.write(message) socket.getOutputStream.close() } } ( new NetworkService( 2020 , 2 )).run |
从下面的示例中,我们可以大致了解内部的线程是怎么进行复用的。
1
2
3
4
5
6
7
8
9
10
11
|
$ nc localhost 2020 pool- 1 -thread- 1 $ nc localhost 2020 pool- 1 -thread- 2 $ nc localhost 2020 pool- 1 -thread- 1 $ nc localhost 2020 pool- 1 -thread- 2 |
Futures
一个Future
代表一次异步计算的操作。你可以把你的操作包装在一个Future里,当你需要结果的时候,你只需要简单调用一个阻塞的get()
方法就好了。一个Executor
返回一个Future
。如果你使用Finagle RPC的话,你可以使用Future
的实例来保存还没有到达的结果。
FutureTask
是一个可运行的任务,并且被设计成由Executor
进行运行。
1
2
3
4
5
|
val future = new FutureTask[String]( new Callable[String]() { def call(): String = { searcher.search(target); }}) executor.execute(future) |
现在我需要结果,那就只能阻塞到直到结果返回。
1
|
val blockingResult = future.get() |
参考 Scala School中关于Finagle的章节有大量使用Future
的示例,也有一些组合使用的例子。Effective Scala中也有关于Futures的内容。
线程安全问题
1
2
3
4
5
|
class Person(var name: String) { def set(changedName: String) { name = changedName } } |
这个程序在多线程的环境下是不安全的。如果两个线程都有同一个Person示例的引用,并且都调用set
方法,你没法预料在两个调用都结束的时候name
会是什么。
在Java的内存模型里,每个处理器都允许在它的L1或者L2 cache里缓存变量,所以两个在不同处理器上运行的线程对于相同的数据有种不同的视图。
下面我们来讨论一下可以强制线程的数据视图保持一致的工具。
三个工具
同步
互斥量(Mutex)提供了锁定资源的语法。当你进入一个互斥量的时候,你会获得它。在JVM里使用互斥量最常用的方式就是在一个对象上进行同步访问。在这里,我们会在Person上进行同步访问。
在JVM里,你可以对任何非null的对象进行同步访问。
1
2
3
4
5
6
7
|
class Person(var name: String) { def set(changedName: String) { this . synchronized { name = changedName } } } |
volatile
随着Java 5对于内存模型的改变,volatile和synchronized的作用基本相同,除了一点,volatile也可以用在null上。
synchronized
提供了更加细粒度的加锁控制。而volatile
直接是对每次访问进行控制。
1
2
3
4
5
|
class Person( @volatile var name: String) { def set(changedName: String) { name = changedName } } |
AtomaticReference
同样的,在Java 5中新增了一系列底层的并发原语。AtomicReference
类就是其中一个。
1
2
3
4
5
6
7
|
import java.util.concurrent.atomic.AtomicReference class Person(val name: AtomicReference[String]) { def set(changedName: String) { name.set(changedName) } } |
它们都有额外的消耗吗?
AutomicReference
是这两种方式中最耗性能的,因为如果你要取得对应的值,则需要经过方法分派(method dispatch)的过程。
volatile
和synchronized
都是通过Java内置的monitor来实现的。在没有竞争的情况下,monitor对性能的影响非常小。由于synchronized
允许你对代码进行更加细粒度的加锁控制,这样就可以减小加锁区,进而减小竞争,因此synchronized
应该是最佳的选择。
当你进入同步块,访问volatile引用,或者引用AtomicReference,Java会强制要求处理器刷新它们的缓存流水线,从而保证数据的一致性。
如果我这里说错了,请指正出来。这是一个很复杂的主题,对于这个主题肯定需要花费大量的时间来进行讨论。
其他来自Java 5的优秀工具
之前提到了AtomicReference
,除了它之外,Java 5还提供了很多其他有用的工具。
CountDownLatch
CountDownLatch
是供多个进程进行通信的一个简单机制。
1
2
3
4
5
6
|
val doneSignal = new CountDownLatch( 2 ) doAsyncWork( 1 ) doAsyncWork( 2 ) doneSignal.await() println( "both workers finished!" ) |
除此之外,它对于单元测试也是很有用的。假设你在做一些异步的工作,并且你想要保证所有的功能都完成了。你只需要让你的函数都对latch进行countDown
操作,然后在你的测试代码里进行await
。
AtomicInteger/Long
由于对于Int和Long的自增操作比较常见,所以就增加了AtomicInteger
和AtomicLong
。
AtomicBoolean
我想我没有必要来解释这个的作用了。
读写锁(ReadWriteLock)
ReadWriteLock
可以实现读写锁,读操作只会在写者加锁的时候进行阻塞。
我们来构建一个非线程安全的搜索引擎
这是一个简单的非线程安全的倒排索引。我们这个反向排索引把名字的一部分映射到指定的用户。
下面是原生的假设只有单线程访问的写法。
注意这里的使用mutable.HashMap
的另一个构造函数this()
。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
import scala.collection.mutable case class User(name: String, id: Int) class InvertedIndex(val userMap: mutable.Map[String, User]) { def this () = this ( new mutable.HashMap[String, User]) def tokenizeName(name: String): Seq[String] = { name.split( " " ).map(_.toLowerCase) } def add(term: String, user: User) { userMap += term -> user } def add(user: User) { tokenizeName(user.name).foreach { term => add(term, user) } } } |
我把具体怎么根据索引获取用户的方法暂时省略掉了,我们后面会来进行补充。
我们来让它变得安全
在上面的倒排索引的示例里,userMap是没法保证线程安全的。多个客户端可以同时尝试去添加元素,这样会产生和之前Person
示例里相似的问题。
因为userMap本身不是线程安全的,那么我们怎么能够保证每次只有一个线程对它进行修改呢?
你需要在添加元素的时候给userMap加锁。
1
2
3
4
5
6
7
|
def add(user: User) { userMap. synchronized { tokenizeName(user.name).foreach { term => add(term, user) } } } |
不幸的是,上面的做法有点太粗糙了。能在互斥量(mutex)外面做的工作尽量都放在外面做。记住我之前说过,如果没有竞争的话,加锁的代价是非常小的。如果你在临界区尽量少做操作,那么竞争就会非常少。
1
2
3
4
5
6
7
8
9
10
11
|
def add(user: User) { // tokenizeName was measured to be the most expensive operation. // tokenizeName 这个操作是最耗时的。 val tokens = tokenizeName(user.name) tokens.foreach { term => userMap. synchronized { add(term, user) } } } |
SynchronizedMap
我们可以通过使用SynchronizedMap trait来使得一个可变的(mutable)HashMap具有同步机制。
我们可以扩展之前的InvertedIndex,给用户提供一种构建同步索引的简单方法。
1
2
3
4
5
|
import scala.collection.mutable.SynchronizedMap class SynchronizedInvertedIndex(userMap: mutable.Map[String, User]) extends InvertedIndex(userMap) { def this () = this ( new mutable.HashMap[String, User] with SynchronizedMap[String, User]) } |
如果你去看具体的实现的话,你会发现SynchronizedMap只是在每个方法上都加上了同步访问,因此它的安全是以牺牲性能为代价的。
Java ConcurrentHashMap
Java里有一个很不错的线程安全的ConcurrentHashMap。幸运的是,JavaConverter可以使得我们通过Scala的语法来使用它。
实际上,我们可以无缝地把我们新的,线程安全的InvertedIndex作为老的非线程安全的一个扩展。
1
2
3
4
5
6
7
8
|
import java.util.concurrent.ConcurrentHashMap import scala.collection.JavaConverters._ class ConcurrentInvertedIndex(userMap: collection.mutable.ConcurrentMap[String, User]) extends InvertedIndex(userMap) { def this () = this ( new ConcurrentHashMap[String, User] asScala) } |
现在来加载我们的InvertedIndex
最原始的方法
1
2
3
4
5
6
7
8
9
10
11
12
13
|
trait UserMaker { def makeUser(line: String) = line.split( "," ) match { case Array(name, userid) => User(name, userid.trim().toInt) } } class FileRecordProducer(path: String) extends UserMaker { def run() { Source.fromFile(path, "utf-8" ).getLines.foreach { line => index.add(makeUser(line)) } } } |
对于文件里的每一行字符串,我们通过调用makeUser
来生成一个User,然后通过add
添加到InvertedIndex里。如果我们并发访问一个InvertedIndex,我们可以并行调用add方法,因为makeUser方法没有副作用,它本身就是线程安全的。
我们不能并行读取一个文件,但是我们可以并行构造User,并且并行将它添加到索引里。
解决方案:生产者/消费者
实现非同步计算的,通常采用的方法就是将生产者同消费者分开,并让它们通过队列(queue)
来进行通信。让我们用下面的例子来说明我们是怎么实现搜索引擎的索引的。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
import java.util.concurrent.{BlockingQueue, LinkedBlockingQueue} // Concrete producer class Producer[T](path: String, queue: BlockingQueue[T]) extends Runnable { def run() { Source.fromFile(path, "utf-8" ).getLines.foreach { line => queue.put(line) } } } // 抽象的消费者 abstract class Consumer[T](queue: BlockingQueue[T]) extends Runnable { def run() { while ( true ) { val item = queue.take() consume(item) } } def consume(x: T) } val queue = new LinkedBlockingQueue[String]() //一个生产者线程 val producer = new Producer[String]( "users.txt" , q) new Thread(producer).start() trait UserMaker { def makeUser(line: String) = line.split( "," ) match { case Array(name, userid) => User(name, userid.trim().toInt) } } class IndexerConsumer(index: InvertedIndex, queue: BlockingQueue[String]) extends Consumer[String](queue) with UserMaker { def consume(t: String) = index.add(makeUser(t)) } // 假设我们的机器有8个核 val cores = 8 val pool = Executors.newFixedThreadPool(cores) // 每个核设置一个消费者 for (i <- i to cores) { pool.submit( new IndexerConsumer[String](index, q)) } |
原文链接: Scala School 翻译: ImportNew.com- 朱伟杰
译文链接: http://www.importnew.com/4750.html
scala中java并发编程的更多相关文章
- 用scala的actor并发编程写一个单机版的WorldCount
前言:最近一段时间比较忙,也是比较懒了吧,好长时间没写博客了,新的一年到来,给自己一个小目标,博客坚持写下去,分享一下这历程!废话不多说,开始正题咯(希望大家喜欢!) 首先这算是一个scala程序的入 ...
- 《Java并发编程实战》第三章 对象的共享 读书笔记
一.可见性 什么是可见性? Java线程安全须要防止某个线程正在使用对象状态而还有一个线程在同一时候改动该状态,并且须要确保当一个线程改动了对象的状态后,其它线程能够看到发生的状态变化. 后者就是可见 ...
- Java并发编程之线程创建和启动(Thread、Runnable、Callable和Future)
这一系列的文章暂不涉及Java多线程开发中的底层原理以及JMM.JVM部分的解析(将另文总结),主要关注实际编码中Java并发编程的核心知识点和应知应会部分. 说在前面,Java并发编程的实质,是线程 ...
- 转: 【Java并发编程】之十八:第五篇中volatile意外问题的正确分析解答(含代码)
转载请注明出处:http://blog.csdn.net/ns_code/article/details/17382679 在<Java并发编程学习笔记之五:volatile变量修饰符-意料之外 ...
- 读Java并发编程实践中,向已有线程安全类添加功能--客户端加锁实现示例
在Java并发编程实践中4.4中提到向客户端加锁的方法.此为验证示例,写的不好,但可以看出结果来. package com.blackbread.test; import java.util.Arra ...
- Java并发编程(十一)-- Java中的锁详解
上一章我们已经简要的介绍了Java中的一些锁,本章我们就详细的来说说这些锁. synchronized锁 synchronized锁是什么? synchronized是Java的一个关键字,它能够将代 ...
- Java并发编程(多线程)中的相关概念
众所周知,在Java的知识体系中,并发编程是非常重要的一环,也是面试中必问的题,一个好的Java程序员是必须对并发编程这块有所了解的. 并发必须知道的概念 在深入学习并发编程之前,我们需要了解几个基本 ...
- Java并发编程中的相关注解
引自:http://www.cnblogs.com/phoebus0501/archive/2011/02/21/1960077.html Java并发编程中,用到了一些专门为并发编程准备的 Anno ...
- Java并发编程中的设计模式解析(二)一个单例的七种写法
Java单例模式是最常见的设计模式之一,广泛应用于各种框架.中间件和应用开发中.单例模式实现起来比较简单,基本是每个Java工程师都能信手拈来的,本文将结合多线程.类的加载等知识,系统地介绍一下单例模 ...
随机推荐
- 【解惑】剖析float型的内存存储和精度丢失问题
问题提出:12.0f-11.9f=0.10000038,"减不尽"为什么? 现在我们就详细剖析一下浮点型运算为什么会造成精度丢失? 1.小数的二进制表示问题 首先我们要搞清楚下面两 ...
- 在React+Babel+Webpack环境中使用ESLint
ESLint是js中目前比较流行的插件化的静态代码检测工具.通过使用它可以保证高质量的代码,尽量减少和提早发现一些错误.使用eslint可以在工程中保证一致的代码风格,特别是当工程变得越来越大.越来越 ...
- 高可用的池化 Thrift Client 实现(源码分享)
本文将分享一个高可用的池化 Thrift Client 及其源码实现,欢迎阅读源码(Github)并使用,同时欢迎提出宝贵的意见和建议,本人将持续完善. 本文的主要目标读者是对 Thrift 有一定了 ...
- GDKOI 2015 Day1 T2 单词统计Pascal
我虽然没有参加GDKOI2015,但是我找了2015年的题练了一下. 题意如下: 思路:最大流,因为有多组数据,每次读入一组数据都要清零. a. 将每个点拆分成两个点,例如样例G→G`,再将字母一一编 ...
- php集成环境和自己配置的区别,php集成环境、php绿色集成环境、php独立安装版环境这三者的区别
最近有学生问我,直接使用PHP集成环境和我们自己独立安装的php环境有什么不一样吗? 答:PHP集成环境,和自己安装的php环境实际上没啥区别的,只不过大部分的集成环境进行了一些绿化操作,本质上没啥区 ...
- Mysql连表查询
http://blog.csdn.net/qmhball/article/details/8000003 可以参考这篇文章
- hdu 4342 History repeat itself(数学题)
题目链接:hdu 4342 History repeat itself 题意: 让你找第a个非完全平方数m,并且求前m个数的开方向下取整的和. 题解: 第一个问题: 假设第a个非平方数是X,X前面有n ...
- hdu 5996 dingyeye loves stone(博弈)
题目链接:hdu 5996 dingyeye loves stone 题意: 给你一棵树,树的每一个节点有a[i]个石子,每个人可以将这个节点的石子移向它的父亲,如果没有合法操作,那么就算输,现在给你 ...
- c#注释
c#的注释分为:这里不能不说一下什么是注释. 注释本身不会执行,只是说明性文字,只供程序员阅读. 注释又分为:单行注释,多行注释,文档注释. 单行注释://开始 多行注释:/*开始, */结束. 文档 ...
- jQuery DOM 元素方法 - index() 方法
元素的 index,相对于选择器 获得元素相对于选择器的 index 位置. 该元素可以通过 DOM 元素或 jQuery 选择器来指定. 语法 $(selector).index(element) ...