显然答案是将一段区间全部转化成了其中位数
这样的话,需要维护一个数据结构支持查询当前所有数中位数
对顶堆
用两个堆
将 < 中位数的数放入大根堆
将 > 中位数的数放入小根堆
这样就会存在删除操作
删除的时候
由于无法快速删除
只需做个标记,标记该数被删除了一次
并且堆的实际大小也应该另外记录维护
在标记时需要更改相应的堆的大小与权值
答案就非常显然了

#include <bits/stdc++.h>

using namespace std;

#define gc getchar()
inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} #define Rep(i, a, b) for(int i = a; i <= b; i ++)
#define Fin(str) freopen(str, "r", stdin)
#define Fout(str) freopen(str, "w", stdout)
#define E return
#define LL long long const int N = 1e5 + ; int n, k;
int A[N], use[N * ]; priority_queue <int, vector<int>, less<int> > Big;
priority_queue <int, vector<int>, greater<int> > Small; int Size1, Size2;
LL Sum1, Sum2; void Update() {
while(Big.size() && use[Big.top()]) use[Big.top()] --, Big.pop();
while(Small.size() && use[Small.top()]) use[Small.top()] --, Small.pop();
} void Out(); void Add(int x) {
Update();
while(Size1 < (k + ) / && Small.size()) {
int num = Small.top();
Small.pop();
Size1 ++, Sum1 += num;
Size2 --, Sum2 -= num;
Big.push(num);
Update();
}
Update();
if(Size1 < (k + ) / ) {
Size1 ++, Sum1 += x, Big.push(x); return ;
}
Update();
int num = Big.top();
if(x < num) {
Small.push(num);
Big.pop();
Size2 ++, Sum2 += num;
Sum1 += (x - num);
Big.push(x);
} else {
Size2 ++, Sum2 += x, Small.push(x);
}
Update();
} void Del(int x) {
use[x] ++;
int top1 = Big.top();
if(x <= top1) Size1 --, Sum1 -= x;
else Size2 --, Sum2 -= x;
} LL Calc() {
Update();
LL mid = Big.top();
return 1ll * mid * Size1 - 1ll * Sum1 + 1ll * Sum2 - 1ll * mid * Size2;
} int main() {
n = read(), k = read();
Rep(i, , n) A[i] = read();
Rep(i, , k) Add(A[i]);
LL Answer = Calc();
int bef = ;
int flag = k, mid = Big.top();
Rep(i, k + , n) {
Del(A[++ bef]);
Add(A[i]);
LL Ans = Calc();
if(Ans < Answer) {
flag = i, mid = Big.top();
Answer = Ans;
}
}
cout << Answer << "\n";
Rep(i, , n) {
if(i <= flag && i >= flag - k + ) {
cout << mid << "\n";
} else cout << A[i] << "\n";
}
return ;
}

luogu 3466 对顶堆的更多相关文章

  1. 【Luogu P1168】【Luogu P1801&UVA 501】中位数&黑匣子(Black Box)——对顶堆相关

    Luogu P1168 Luogu P1801 UVA 501(洛谷Remote Judge) 前置知识:堆.优先队列STL的使用 对顶堆 是一种在线维护第\(k\)小的算法. 其实就是开两个堆,一个 ...

  2. Luogu 3466 [POI2008]KLO-Building blocks

    BZOJ 1112. 题意相当于在一个长度为$k$的区间内选择一个数$s$使$\sum_{i = 1}^{k}\left | a_i - s \right |$最小. 很显然是中位数. 然后只要写一个 ...

  3. hdu3282 链表或者对顶堆

    维护序列的动态中位数 第一次用链表做题..感觉指针指来指去也挺麻烦的.. 本题链表解法就是用数组模拟出一个链表,然后离线输入所有数,排序,按照输入顺序在链表里删除元素,一次性删掉两个,然后中位数指针对 ...

  4. 【uoj#280】[UTR #2]题目难度提升 对顶堆+STL-set

    题目描述 给出 $n$ 个数 $a_1,a_2,...,a_n$ ,将其排为序列 $\{p_i\}$ ,满足 $\{前\ i\ 个数的中位数\}$ 单调不降.求字典序最大的 $\{p_i\}$ . 其 ...

  5. hdu4261 Estimation[暴力dp+对顶堆]

    https://vjudge.net/problem/HDU-4261 对于一个长2000的数列划分最多25个块,每块代价为块内每个数与块内中位数差的绝对值之和,求最小总代价. 套路化地,设$f[i] ...

  6. 【POJ 3784】 Running Median (对顶堆)

    Running Median Description For this problem, you will write a program that reads in a sequence of 32 ...

  7. P1168 中位数(对顶堆)

    题意:维护一个序列,两种操作 1.插入一个数 2.输出中位数(若长度为偶数,输出中间两个较小的那个) 对顶堆 维护一个小根堆,一个大根堆,大根堆存1--mid,小根堆存mid+1---n 这样堆顶必有 ...

  8. poj3784 Running Median[对顶堆]

    由于我不会讲对顶堆,所以这里直接传上一个巨佬的学习笔记. 对顶堆其实还是很容易理解的,想这题的时候自己猜做法也能把没学过的对顶堆给想出来.后来了解,对顶堆主要还是动态的在线维护集合$K$大值.当然也可 ...

  9. 洛谷 - P1801 - 黑匣子 - 对顶堆

    这道题是提高+省选-的难度,做出来的话对数据结构题目的理解会增加很多. 可以使用一种叫做对顶堆的东西,对顶堆是在线维护第n小的logn的算法.大概的思路是,假如我们要找的是第n小,我们就维护一个大小为 ...

随机推荐

  1. Build step 'Send files or execute commands over SSH' changed build result to UNSTABLE

    删除logs文件夹日志即可

  2. java 堆 排序学习

    /** * <html> * <body> * <P> Copyright 1994 JsonInternational</p> * <p> ...

  3. ADO.Net和SqlHelper封装

    1.什么是ADO.Net 简单来讲,ADO.NET是用于和数据源打交道的.Net结束,是一组向.NET程序员公开数据访问服务的类   2.ADO.NET的组成部分和对象模型 (1)ADO.NET的两个 ...

  4. (三) Docker 常用操作与CentOS7 防火墙命令

    参考并感谢 Docker 常用命令 https://docs.docker.com/engine/reference/commandline/docker/ Docker 登录docker账户 doc ...

  5. 查看font字体文件

    url: http://bluejamesbond.github.io/CharacterMap/ 打开网址后,如下图操作

  6. Java High Level REST Client 使用示例

    概述 ES 在 7.0 版本开始将废弃 TransportClient,8.0 版本开始将完全移除 TransportClient,取而代之的是 High Level REST Client,官方文档 ...

  7. 1+X证书学习日志——定位

    ## 静态定位:                 position:static;    默认值,指定left/right/top/bottom/  没有作用.                 pos ...

  8. python 数据类型 常用法方

    python 数据类型 常用法方 upper() 大写 str lower() 小写 str strip() rstrip() lstrip() 去除字符两边的空格 去右边 左边空白 str repl ...

  9. HTML Marquee跑马灯

    Marquee是html的标签,所有的主流浏览器都能兼容,用于创建文字滚动. 来介绍下标签的属性 滚动方向 direction <!--滚动方向 direction 4个值 up down le ...

  10. ssh远程登录连接慢的解决方法

    近期在搭建自动化集群服务,写脚本ssh批量分发公钥至其它服务器时比较缓慢,便在度娘上寻找解决方法如下: 方法一: 以ssh -v 调试模式远程登录: [root@bqh-nfs- ceshi]# ss ...