洛谷 P1351 联合权值

洛谷传送门

JDOJ 2886: [NOIP2014]联合权值 D1 T2

JDOJ传送门

Description

无向连通图 G有 n个点,n-1条边。点从 1到 n依次编号,编号为 i的点的权值为 Wi,每条边的长度均为 1。图上两点 (u, v)的距离定义为 u点到 v点的最短距离。对于图 G上的点对(u, v),若它们的距离为 2,则它们之间会产生Wu×Wv的联合权值。

请问图 G上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

Input

第一行包含 1个整数 n。

接下来 n-1行,每行包含 2个用空格隔开的正整数 u、v,表示编号为 u和编号为 v的点之间有边相连。

最后 1行,包含 n个正整数,每两个正整数之间用一个空格隔开,其中第 i个整数表示图 G上编号为 i的点的权值为 Wi。

Output

输出共 1行,包含 2个整数,之间用一个空格隔开,依次为图 G上联合权值的最大值和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对 10007取余。

Sample Input

5 1 2 2 3 3 4 4 5 1 5 2 3 10

Sample Output

20 74

HINT

【样例说明】

本例输入的图如上所示,距离为 2的有序点对有(1,3)、(2,4)、(3,1)、(3,5)、(4,2)、(5,3)。其联合权值分别为 2、15、2、20、15、20。其中最大的是 20,总和为 74。

【数据说明】

对于 30%的数据,1< n ≤100;

对于 60%的数据,1< n ≤2000;

对于 100%的数据,1< n ≤200,000,0< Wi ≤10,000。

标签给的LCA,纯属P话。

这题不需要LCA的过程。根据题面,这是一棵树。

保证了没有环。

然后呢?我们就能发现,距离为2的点会有联合权值,那么我们就可以断定,这两个点是连在一个父亲节点上的。

然后我们就可以得出枚举的大致思路。

先枚举每个点,枚举它的所有出边,记录最大值和次大值,这个最大值和次大值之积就是第一问的解。

比较麻烦的是第二问。

它需要累加联合权值,这个temp是每次枚举到一个节点的时候的中转值,它需要累加权值,最后的temp就是这个父亲节点所能拼凑出的所有联合权值的值,然后累加ans2,注意取模。

最后还有答案的特殊处理。

就这样AC吧

#include<cstdio>
#include<algorithm>
using namespace std;
const int mod=1e4+7;
int n,ans1,ans2;
int tot,to[400001],nxt[400001],head[200001],w[200001];
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for(int i=1;i<=n;i++)
scanf("%d",&w[i]);
for(int i=1;i<=n;i++)
{
int max1=0,max2=0;
int temp=0;
for(int j=head[i];j;j=nxt[j])
{
int y=to[j];
if(w[y]>max1)
{
max2=max1;
max1=w[y];
}
else if(w[y]>max2)
max2=w[y];
ans2=(ans2+temp*w[y])%mod;
temp=(temp+w[y])%mod;
}
ans1=max(ans1,max1*max2);
}
printf("%d %d",ans1,(ans2*2)%mod);
return 0;
}

NOIP 2004 联合权值的更多相关文章

  1. Luogu 1351 NOIP 2014 联合权值(贪心,计数原理)

    Luogu 1351 NOIP 2014 联合权值(贪心,计数原理) Description 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi, ...

  2. [NOIp 2014]联合权值

    Description 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v ...

  3. NOIp 2014 联合权值 By cellur925

    题目传送门 这题自己(真正)思考了很久(欣慰). (轻而易举)地发现这是一棵树后,打算从Dfs序中下功夫,推敲了很久规律,没看出来(太弱了). 开始手动枚举距离为2的情况,模模糊糊有了一些概念,但没有 ...

  4. NOIp 2014 #2 联合权值 Label:图论 !!!未AC

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  5. NOIP 提高组 2014 联合权值(图论???)

    传送门 https://www.cnblogs.com/violet-acmer/p/9937201.html 题解: 相关变量解释: int n; int fa[maxn];//fa[i] : i的 ...

  6. 题解【luoguP1351 NOIp提高组2014 联合权值】

    题目链接 题意:给定一个无根树,每个点有一个权值.若两个点 \(i,j\) 之间距离为\(2\),则有联合权值 \(w_i \times w_j\).求所有的联合权值的和与最大值 分析: 暴力求,每个 ...

  7. NOIP 2014 T2 联合权值 DFS

    背景 NOIP2014提高组第二题 描述 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi ,每条边的长度均为1.图上两点(u, v)的距离定义为u点到v点的最短距离.对 ...

  8. Codevs 3728 联合权值

    问题描述 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi ,每 条边的长度均为1.图上两点(u,v)的距离定义为u点到v点的最短距离.对于图G上的点 对(u,v),若它 ...

  9. P1906联合权值

    描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的最短距离. ...

随机推荐

  1. 热情组——项目冲刺 Day7

    项目相关 作业相关 具体描述 班级 班级链接 作业要求 链接地址 团队名称 热情组 作业目标 实现软件制作,以及在福大的传播 Github链接 链接地址 SCRUM部分: 成员昵称 昨日目标 开始时间 ...

  2. [BZOJ1852] [MexicoOI06]最长不下降序列

    [BZOJ1852] [MexicoOI06]最长不下降序列 额我也不知道是不是水过去的...和网上的另一篇题解对拍过了,但是拍不出来... 经过和神仙的讨论基本可以确定是对的了 考虑如下贪心 (我将 ...

  3. xunit测试无法找到testhost或没有可用测试的问题解决方法

    xunit进行测试,需要安装如下几个包: Microsoft.TestPlatform.TestHost Microsoft.NET.Test.Sdk xunit.runner.visualstudi ...

  4. etcd v3 ssl 集群添加新节点

    集群搭建 下面只用同一台服务器进行三个成员节点的开启 节点1 ./etcd --name cd0 --initial-advertise-peer-urls http://127.0.0.1:2380 ...

  5. 基于canvas自动化运维工具

    首先我们的工具绝对顶尖,绝对绚丽.如果有需要代码,可以加我微信索取.18500591275 前几天有个客户找到我,问我这个能不能做,我看自己也干了10年前端了,实在做不了,后来人家说给你10000你能 ...

  6. Vue.js+vue-element

    Vue.js+vue-element搭建属于自己的后台管理模板:什么是Vue.js?(一)   Vue.js+vue-element搭建属于自己的后台管理模板:Vue.js是什么?(一) 前言 本教程 ...

  7. 『Norma 分治』

    Norma Description Input Format 第1行,一个整数N: 第2~n+1行,每行一个整数表示序列a. Output Format 输出答案对10^9取模后的结果. Sample ...

  8. Redis(八) LRU Cache

    Redis(八)-- LRU Cache 在计算机中缓存可谓无所不在,无论还是应用还是操作系统中,为了性能都需要做缓存.然缓存必然与缓存算法息息相关,LRU就是其中之一.笔者在最先接触LRU是大学学习 ...

  9. KVM 学习笔记

    查看虚拟化环境 (1)查看虚拟机环境 (2)查看kvm模块支持 (3)查看虚拟工具版本 (4)查看网桥

  10. .net 中访问config的一些方式

    人所缺乏的不是才干而是志向,不是成功的能力而是勤劳的意志. 哎!好久没有写博客了,今天就分享一些比较常用的对config文件的访问一些方式. 首先 引用 using System.Configurat ...