Redis特性

一个产品的使用场景肯定是需要根据产品的特性,先列举一下Redis的特点:

  • 读写性能优异
  • 持久化
  • 数据类型丰富
  • 单线程
  • 数据自动过期
  • 发布订阅
  • 分布式

这里我们通过几个场景,不同维度说下Redis的应用。

高性能适合当做缓存

缓存是Redis最常见的应用场景,之所有这么使用,主要是因为Redis读写性能优异。而且逐渐有取代memcached,成为首选服务端缓存的组件。而且,Redis内部是支持事务的,在使用时候能有效保证数据的一致性。 作为缓存使用时,一般有两种方式保存数据:

  • 1、读取前,先去读Redis,如果没有数据,读取数据库,将数据拉入Redis。
  • 2、插入数据时,同时写入Redis。

方案一:实施起来简单,但是有两个需要注意的地方:
1、避免缓存击穿。(数据库没有就需要命中的数据,导致Redis一直没有数据,而一直命中数据库。)
2、数据的实时性相对会差一点。

方案二:数据实时性强,但是开发时不便于统一处理。 。

当然,两种方式根据实际情况来适用。如:方案一适用于对于数据实时性要求不是特别高的场景。方案二适用于字典表、数据量不大的数据存储。

丰富的数据格式性能更高,应用场景丰富

Redis相比其他缓存,有一个非常大的优势,就是支持多种数据类型。

数据类型说明string字符串,最简单的k-v存储hashhash格式,value为field和value,适合ID-Detail这样的场景。list简单的list,顺序列表,支持首位或者末尾插入数据set无序list,查找速度快,适合交集、并集、差集处理sorted set有序的set

其实,通过上面的数据类型的特性,基本就能想到合适的应用场景了。

  • string——适合最简单的k-v存储,类似于memcached的存储结构,短信验证码,配置信息等,就用这种类型来存储。
  • hash——一般key为ID或者唯一标示,value对应的就是详情了。如商品详情,个人信息详情,新闻详情等。
  • list——因为list是有序的,比较适合存储一些有序且数据相对固定的数据。如省市区表、字典表等。因为list是有序的,适合根据写入的时间来排序,如:最新的***,消息队列等。
  • set——可以简单的理解为ID-List的模式,如微博中一个人有哪些好友,set最牛的地方在于,可以对两个set提供交集、并集、差集操作。例如:查找两个人共同的好友等。
  • Sorted Set——是set的增强版本,增加了一个score参数,自动会根据score的值进行排序。比较适合类似于top 10等不根据插入的时间来排序的数据。

如上所述,虽然Redis不像关系数据库那么复杂的数据结构,但是,也能适合很多场景,比一般的缓存数据结构要多。了解每种数据结构适合的业务场景,不仅有利于提升开发效率,也能有效利用Redis的性能。

单线程可以作为分布式锁

谈到Redis和Memcached 的区别,大家更多的是谈到数据结构和持久化这两个特性,其实还有一个比较大的区别就是:

  • Redis 是单线程,多路复用方式提高处理效率。
  • Memcached 是多线程的,通过CPU线程切换来提高处理效率。

所以Redis单线程的这个特性,其实也是很重要的应用场景,最常用的就是分布式锁。
应对高并发的系统,都是用多服务器部署,每个技术框架针对数据锁都有很好的处理方式,如 .net 的lock,java 的synchronized,都能通过锁住某个对象来应对线程导致的数据污染问题。但是毕竟,只能控制本服务器的线程,分布式部署以后数据污染问题,就比较难处理了。Redis的单线程这个特性,就非常符合这个需求,伪代码如下:

//产生锁
while lock!=1
//过期时间是为了避免死锁
now = int(time.time())
lock_timeout = now + LOCK_TIMEOUT + 1
lock = redis_client.setnx(lock_key, lock_timeout) //真正要处理的业务
doing() //释放锁
now = int(time.time())
if now < lock_timeout:
redis_client.delete(lock_key)

以上是一个只说明流程的伪代码,其实整体的逻辑是很简单的,只要考虑到死锁时的情况,就比较好处理了。Redis作为分布式锁,因为其性能的优势,不会成为瓶颈,一般会产生瓶颈的是真正的业务处理内容,还是尽量缩小锁的范围来确保系统性能。

自动过期能有效提升开发效率

Redis针对数据都可以设置过期时间,这个特点也是大家应用比较多的,过期的数据清理无需使用方去关注,所以开发效率也比较高,当然,性能也比较高。最常见的就是:短信验证码、具有时间性的商品展示等。无需像数据库还要去查时间进行对比。因为使用比较简单,就不赘述了。

分布式和持久化有效应对海量数据和高并发

Redis初期的版本官方只是支持单机或者简单的主从,大多应用则都是自己去开发集群的中间件,但是随着应用越来越广泛,用户关于分布式的呼声越来越高,所以Redis 3.0版本时候官方加入了分布式的支持,主要是两个方面:

  • Redis服务器主从热备,确保系统稳定性
  • Redis分片应对海量数据和高并发

而且Redis虽然是一个内存缓存,数据存在内存,但是Redis支持多种方式将数据持久化,写入硬盘,所有,Redis数据的稳定性也是非常有保障的,结合Redis的集群方案,有的系统已经将Redis当做一种NoSql数据存储来适用。

示例:秒杀和Redis的结合

秒杀是现在互联网系统中常见的营销模式,作为开发者,其实最不愿意这样的活动,因为非技术人员无法理解到其中的技术难度,导致在资源协调上总是有些偏差。秒杀其实经常会出现的问题包括:

  • 并发太高导致程序阻塞。
  • 库存无法有效控制,出现超卖的情况。

其实解决这些问题基本就两个方案:

  • 数据尽量缓存,阻断用户和数据库的直接交互。
  • 通过锁来控制避免超卖现象。

现在说明一下,如果现在做一个秒杀,那么,Redis应该如何结合进行使用?

  • 提前预热数据,放入Redis
  • 商品列表放入Redis List
  • 商品的详情数据 Redis hash保存,设置过期时间
  • 商品的库存数据Redis sorted set保存
  • 用户的地址信息Redis set保存
  • 订单产生扣库存通过Redis制造分布式锁,库存同步扣除
  • 订单产生后发货的数据,产生Redis list,通过消息队列处理
  • 秒杀结束后,再把Redis数据和数据库进行同步

以上是一个简略的秒杀系统和Redis结合的方案,当然实际可能还会引入http缓存,或者将消息对接用MQ代替等方案,也会出现业务遗漏的情况,这个只是希望能抛砖引玉。

每个技术都有属于自己的应用场景,只有对技术的特点有一定清晰的认识,才能更好的利用技术,发挥其最大的优势。


Redis的特性及运用的更多相关文章

  1. redis 高级特性 不要太好用

    Redis高级特性及应用场景 redis中键的生存时间(expire) redis中可以使用expire命令设置一个键的生存时间,到时间后redis会自动删除它. 过期时间可以设置为秒或者毫秒精度. ...

  2. 【Redis】二、Redis高级特性

    (三) Redis高级特性   前面我们介绍了Redis的五种基本的数据类型,灵活运用这五种数据类型是使用Redis的基础,除此之外,Redis还有一些特性,掌握这些特性能对Redis有进一步的了解, ...

  3. Redis高级特性及应用场景

    Redis高级特性及应用场景 redis中键的生存时间(expire) redis中可以使用expire命令设置一个键的生存时间,到时间后redis会自动删除它. 过期时间可以设置为秒或者毫秒精度. ...

  4. redis的keys常用操作及redis的特性

    redis的keys常用操作 1.获得所有的keys: keys * 2.可以模糊查询 keys:keys  my* 3.删除keys:del mymkey1 mykey2 4.是否存在keys:ex ...

  5. Redis高级特性介绍及实例分析

    转自:http://www.jianshu.com/p/af7043e6c8f9   Redis基础类型回顾 String Redis中最基本,也是最简单的数据类型.注意,VALUE既可以是简单的St ...

  6. Redis 高级特性

    Redis 数据结构 Redis 常用的数据类型主要有以下五种: String Hash List Set Sorted set Redis 内部使用一个 redisObject 对象来表示所有的 k ...

  7. Redis的特性以及优势(附官网)

    NoSQL:一类新出现的数据库(not only sql) 泛指非关系型的数据库 不支持SQL语法 存储结构跟传统关系型数据库中的那种关系表完全不同,nosql中存储的数据都是KV形式 NoSQL的世 ...

  8. Redis GEO 特性在 LBS 中的应用总结

    什么是LBS LBS(Location Based Service),基于位置的服务. Redis和GEO Redis 是最热门的 nosql 数据库之一,它的最大特点就是快.所以在 LBS 这种需要 ...

  9. redis新特性

    摘自<redis 4.xcookbook> 从实例重启同步] 故障切换同步] 4.0之前从实例主键过期bug redis4新特性 Memory Command Lazy Free PSYN ...

随机推荐

  1. 接口中的JSON报文

    原始报文: 请求报文: [ { "appNo" : "", "applicantCredentialCode" : "" ...

  2. python 类 双下划线解析

    __getattr__用法:说明:这是python里的一个内建函数,当调用的属性或者方法不存在时,该方法会被调用调用不存在的属性调用不存在的方法

  3. Linux入门——安装jdk、tomcat、MySQL以及项目部署

    Linux简介     Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和Unix的多用户.多任务. 支持多线程和多CPU的操作系统.伴随着互联网的发展,     Linu ...

  4. Hive-2.3.6 安装

    本安装依赖Haddop2.8安装 https://www.cnblogs.com/xibuhaohao/p/11772031.html 一.下载Hive与MySQL jdbc 连接驱动 apache- ...

  5. RookeyFrame 信息 常用信息整理

    博客 https://www.cnblogs.com/rookey/ gitee的地址: https://gitee.com/rookey/Rookey.Frame-v2.0 https://gite ...

  6. 「LibreOJ NOI Round #2」单枪匹马

    嘟嘟嘟 这题没卡带一个\(log\)的,那么就很水了. 然后我因为好长时间没写矩阵优化dp,就只敲了一个暴力分--看来复习还是很关键的啊. 这个函数显然是从后往前递推的,那么令第\(i\)位的分子分母 ...

  7. 2017.10.2 国庆清北 D2T2 树上抢男主

    /* 我只看懂了求LCA */ #include<iostream> #include<cstring> #include<cstdio> #include< ...

  8. Processing玩抠图

    突然兴起想玩一下抠图,试着用自带的Example\video来改,花了一个中午做了个小样: 分别是白色为底与黑色为底的效果,代码如下: import processing.video.*; int n ...

  9. 洛谷P1514引水入城

    题目 搜索加贪心其实并不需要用到\(DP\),搜索也是比较简单地搜索. 对于每个第一行的城市进行类似于滑雪那道题的搜索,然后记录最后一行它所覆盖的区间,易得一个一行城市只会有一个区间.然后可以在最后进 ...

  10. Linux下多线程模拟停车场停车

    #include<stdio.h> #include<string.h> #include<unistd.h> #include<stdlib.h> # ...