一、Hadoop版本特性

MRv1

第一代计算框架,由编程模型和运行时环境两部分组成。

编程模型是,将数据进行map操作,然后进行reduce操作,最后将计算结果存储到HDFS中。

运行时环境是,由JobTracker和TaskTracker组成,JobTracker进行资源管理和作业控制。TaskTracker负责接收JobTracker分配的任务并执行。

YARN/MRv2

针对MRv1的问题,提出YARN资源管理框架,将JobTracker中的资源管理和作业控制分开,资源管理由ResourceManager进程实现,作业控制由ApplicationMaster进程实现。

二、模型概述

The MapReduce framework operates exclusively on <key, value> pairs, that is, the framework views the input to the job as a set of <key, value> pairs and produces a set of <key, value> pairs as the output of the job, conceivably of different types.

The key and value classes have to be serializable by the framework and hence need to implement the Writable interface. Additionally, the key classes have to implement the WritableComparable interface to facilitate sorting by the framework.

Input and Output types of a MapReduce job:

(input) <k1, v1> -> map -> <k2, v2> -> combine -> <k2, v2> -> reduce -> <k3, v3> (output)

map()

对多个key/value进行处理产生对应的新的key/value。

reduce()

对key/value进行处理,生成最终结果。

MapReduce架构

实现一个MapReduce程序

对数据进行处理。找出所有年份中的最高气温。

引入Jar包

<!-- hadoop mapreduce编程所需jars -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>3.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>3.2.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.2.0</version>
</dependency>
<dependency>
<groupId>commons-cli</groupId>
<artifactId>commons-cli</artifactId>
<version>1.2</version>
</dependency>

MapReduce模型


Hadoop MapReduce is a software framework for easily writing applications which process vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of nodes) of commodity hardware in a reliable(可靠的), fault-tolerant manner(方式).

MR是一个软件框架,可以简化编写应用,用于在分布式环境下,用一种可用、容错的方式处理大规模数据。


A MapReduce job usually splits the input data-set into independent chunks(块、片) which are processed by the map tasks in a completely parallel manner. The framework sorts the outputs of the maps, which are then input to the reduce tasks. Typically both the input and the output of the job are stored in a file-system. The framework takes care of scheduling tasks, monitoring them and re-executes the failed tasks.

一个MR任务,通常将输入的数据集用map任务以完全并行的方式处理成独立的块。

参考文档

Hadoop技术内幕:深入解析MapReduce架构设计与实现原理

Hadoop(四)—— MapReduce的更多相关文章

  1. hadoop系列四:mapreduce的使用(二)

    转载请在页首明显处注明作者与出处 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等. 当前使用的hadoop版本为2.6 ...

  2. Hadoop基础-MapReduce入门篇之编写简单的Wordcount测试代码

    Hadoop基础-MapReduce入门篇之编写简单的Wordcount测试代码 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 本文主要是记录一写我在学习MapReduce时的一些 ...

  3. Hadoop基础-MapReduce的排序

    Hadoop基础-MapReduce的排序 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce的排序分类 1>.部分排序 部分排序是对单个分区进行排序,举个 ...

  4. Hadoop基础-MapReduce的数据倾斜解决方案

    Hadoop基础-MapReduce的数据倾斜解决方案 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据倾斜简介 1>.什么是数据倾斜 答:大量数据涌入到某一节点,导致 ...

  5. Hadoop基础-MapReduce的Partitioner用法案例

    Hadoop基础-MapReduce的Partitioner用法案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Partitioner关键代码剖析 1>.返回的分区号 ...

  6. Hadoop基础-MapReduce的Combiner用法案例

    Hadoop基础-MapReduce的Combiner用法案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.编写年度最高气温统计 如上图说所示:有一个temp的文件,里面存放 ...

  7. Hadoop基础-MapReduce的工作原理第二弹

    Hadoop基础-MapReduce的工作原理第二弹 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Split(切片)  1>.MapReduce处理的单位(切片) 想必 ...

  8. Hadoop基础-MapReduce的工作原理第一弹

    Hadoop基础-MapReduce的工作原理第一弹 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在本篇博客中,我们将深入学习Hadoop中的MapReduce工作机制,这些知识 ...

  9. hadoop的mapReduce和Spark的shuffle过程的详解与对比及优化

    https://blog.csdn.net/u010697988/article/details/70173104 大数据的分布式计算框架目前使用的最多的就是hadoop的mapReduce和Spar ...

  10. hadoop之mapreduce详解(进阶篇)

    上篇文章hadoop之mapreduce详解(基础篇)我们了解了mapreduce的执行过程和shuffle过程,本篇文章主要从mapreduce的组件和输入输出方面进行阐述. 一.mapreduce ...

随机推荐

  1. 微信小程序下拉框组件

    >>下拉组件 1.组件结构: 2.index.js: //index.js Component({ /** * 组件的属性列表 */ properties: { propArray: { ...

  2. exchange From Middle English eschaunge

    exchange From Middle English eschaunge, borrowed from Anglo-Norman eschaunge exchange 1.An act of ex ...

  3. Solr基础知识二(导入数据)

    上一篇讲述了solr的安装启动过程,这一篇讲述如何导入数据到solr里. 一.准备数据 1.1 学生相关表 创建学生表.学生专业关联表.专业表.学生行业关联表.行业表.基础信息表,并创建一条小白的信息 ...

  4. 总结一下NDK crash排查步骤

    总结一下NDK crash排查步骤: 先在PC上跑通算法 用Visual Studio写算法的testbed,确保算法能跑通 抓log adb logcat -c; adb logcat > 1 ...

  5. Linux命令——jobs、bg、fg、nohup

    参考:Bash基础——工作管理(Job control) jobs -l :除了列出 job number 与命令串之外,同时列出 PID 的号码: -r :仅列出正在背景 run 的工作:-s :仅 ...

  6. PAT甲级1005水题飘过

    题目分析:用一个字符串输入之后遍历每一位求和后,不断%10获取最后一位存储下来,逆序用对应的英文单词输出(注意输入为0的情况) #include<iostream> #include< ...

  7. (MYSQL)回表查询原理,利用联合索引实现索引覆盖

    一.什么是回表查询? 这先要从InnoDB的索引实现说起,InnoDB有两大类索引: 聚集索引(clustered index) 普通索引(secondary index) InnoDB聚集索引和普通 ...

  8. 数据库迁移Flyway

    为什么需要Flyway 日常开发常常会遇到一些这样的场景 小红开发一个模块在本地数据库增加了两个字段,并且改动了dao层的代码提交到git.这时候小黄拉取了代码Run很可能报错. 如果在上线正式环境的 ...

  9. Serializable的作用

    前两天接触到VO,DTO,entity这些概念,发现别人的代码中会有 implements serializable这个东西,之前并没有见过这种写法,就去了解了一下原因 import java.io. ...

  10. What is the syntax for a for loop in TSQL?

    loop  报错 英 [luːp]  美 [lup]  口语练习 vi. 打环:翻筋斗 n. 环:圈:弯曲部分:翻筋斗 vt. 使成环:以环连结:使翻筋斗 syntax  报错 英 ['sɪntæks ...