前面几篇关于数据库底层磁盘文件读取,数据库索引实现细节进行了深入的研究,但是没有串联起来的讲解为什么数据库索引会采用B树和B+树而不是其他的数据结构,例如平衡二叉树、链表等,因此,本文打算从数据库文件存储以及读取说起,讲解数据库索引的由来。

我们以抛出问题的形式开始讲解:

(1)数据库文件存储的方式
     数据库文件存储都是以磁盘文件存储在系统中的,这也是数据库能持久化存储数据的原因。

(2)从数据库读取数据的原理
        从数据库读取数据,先暂且不考虑从缓存中读取数据的情况,那就是从磁盘文件中读取数据的,我们知道从磁盘文件中读取数据是比较耗时的,数据库的select操作的时间,取决于执行磁盘IO的次数,因此尽量减少磁盘IO就可以显著的提升数据的查询速度。

(3)减少磁盘IO操作的影响因素
      有哪些因素可以减少磁盘IO呢,这首先得将了解一下磁盘IO与预读。

磁盘IO与预读

磁盘读取依靠的是机械运动,分为寻道时间、旋转延迟、传输时间三个部分,这三个部分耗时相加就是一次磁盘IO的时间,大概9ms左右。这个成本是访问内存的十万倍左右;正是由于磁盘IO是非常昂贵的操作,所以计算机操作系统对此做了优化:预读;每一次IO时,不仅仅把当前磁盘地址的数据加载到内存,同时也把相邻数据也加载到内存缓冲区中。因为局部预读原理说明:当访问一个地址数据的时候,与其相邻的数据很快也会被访问到。每次磁盘IO读取的数据我们称之为一页(page)。一页的大小与操作系统有关,一般为4k或者8k。这也就意味着读取一页内数据的时候,实际上发生了一次磁盘IO。

正因为有了磁盘IO预读机制,所以才有了减少磁盘IO的可能,因为一次磁盘IO操作,可以查找到物理存储中相邻的一大片数据。

以索引为B+树为例:

磁盘IO次数和索引数据结构查询的次数以及磁盘IO与预读都有关系,具体关系:磁盘IO次数 <= B+树中从根节点一直到叶子节点整个过程中查询的节点数。

一次磁盘IO操作可以取出物理存储中相邻的一大片数据,如果查询的索引数据(就是B+树中从根节点一直到叶子节点整个过程中查询的节点数)都集中在该区域,那么只需要一次磁盘IO,否则就需要多次磁盘IO

(4)基于磁盘IO预读机制,索引可以快速查询数据
   到现在才开始讲解索引了。正是基于磁盘IO预读机制的前提,数据库可以采用索引机制快速查询出数据。

(a)什么是索引

索引是帮助数据高效查询数据的一种数据结构,它包含一个表中某些列的值以及记录对应的地址,并且把这些值存储在一个数据结构中。常用的索引有B树和B+树

(b)为什么要使用索引

举个例子来说,假设我们有一个数据库student,这个表分别有三个字段:name,age,class。假设表中有2000条记录。

1、假如没有使用索引,当我们查询名为“xiaxia”的学生的时候,即调用:

select name,age,class from student where name = "xiaxia";
      此时数据库不得不在student表中对这2000条记录一条一条的进行判断name字段是否为“xiaxia”。这也就是所谓的全表扫描。

2、而当我们在student表上的name字段上创建索引时,当我们查询名为“xiaxia”的学生时:

会通过索引查找去查询名为“xiaxia”的学生,因为该索引已经按照字母顺序排列,因此要查找名为“xiaxia”的记录时会快很多,因为名字首字母为“x”的雇员都是排列在一起的。通过该索引,能获取到表中对应的记录。

(5)数据库中使用什么数据结构作为索引
     (a)链表

链表的查询速度是O(N),每次查询都得从链表头开始查询,例如上面查询“xiaxia”,如果xiaxia在1000的位置,那么需要遍历1000次才能查找到。

(b)数组

有人可能会说,查询速度肯定是数据最快呀,毕竟O(1),的确单纯就select的话,采用数组的形式是最合适的,但是采用数组会遇到如下几个问题:1、采用数组的话,其他操作如Delete、Update、Insert就不合适了;2、另外一个原因:索引是存在于磁盘中,当索引非常大的时候,达到几个G的时候,无法一次加载到内存中。

(c)平衡二叉树

二叉查找树查询的时间复杂度是O(logN),查找速度最快和比较次数最少,既然性能已经如此优秀,但为什么实现索引是使用B-Tree而不是二叉查找树,关键因素是磁盘IO的次数。

(d)B树和B+树

数据库索引采用的数据结构

(6)采用平衡二叉树和B树,数据查询的对比
      这里直接引用https://blog.csdn.net/sinat_27602945/article/details/80118362,感谢博主。

二叉树查询过程:
           我们先来看二叉树查找时磁盘IO的次:定义一个树高为4的二叉树,查找值为10:

第一次磁盘IO:

第二次磁盘IO

第三次磁盘IO:

第四次磁盘IO:

从二叉树的查找过程了来看,树的高度和磁盘IO的次数都是4,所以最坏的情况下磁盘IO的次数由树的高度来决定。

从前面分析情况来看,减少磁盘IO的次数就必须要压缩树的高度,让瘦高的树尽量变成矮胖的树,所以B-Tree就在这样伟大的时代背景下诞生了。

B-Tree查询过程:
 如下有一个3阶的B树,观察查找元素21的过程:

第一次磁盘IO:

第二次磁盘IO:

这里有一次内存比对:分别跟3与12比对

第三次磁盘IO:

B树的查询次数少于平衡二叉树!所以基于B树以及B+树的查询次数少于平衡二叉树。

关于B+树的具体讲解,可以参照前面的博客:漫画叙述B+树和B-树,很值得看!

深入理解数据库索引采用B树和B+树的原因的更多相关文章

  1. 数据库索引(结合B-树和B+树)

    数据库索引,是数据库管理系统中一个排序的数据结构以协助快速查询.更新数据库表中数据.索引的实现通常使用B树及其变种B+树. 在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种 ...

  2. 【转】B-树和B+树的应用:数据搜索和数据库索引

    B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树: ⑴树中每个结点至多有m 棵子树: ⑵若根结点不是叶子 ...

  3. 数据结构 B-树和B+树的应用:数据搜索和数据库索引

    B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每个结点至多有m 棵子树:⑵若根结点不是叶子结点 ...

  4. B-树和B+树的应用:数据搜索和数据库索引

    B-树和B+树的应用:数据搜索和数据库索引  B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每 ...

  5. 为什么说B+-tree比B 树更适合实际应用中操作系统的文件索引和数据库索引?

    B树: B+树 1) B+-tree的磁盘读写代价更低 B+-tree的内部结点并没有指向关键字具体信息的指针.因此其内部结点相对B 树更小.如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所 ...

  6. (转)B-树和B+树的应用:数据搜索和数据库索引

    B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树: ⑴树中每个结点至多有m 棵子树: ⑵若根结点不是叶子 ...

  7. 为什么MySQL数据库索引选择使用B+树?

    在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使 ...

  8. MySQL数据库中索引的数据结构是什么?(B树和B+树的区别)

    B树(又叫平衡多路查找树) 注意B-树就是B树,-只是一个符号. B树的性质(一颗M阶B树的特性如下) 1.定义任意非叶子结点最多只有M个儿子,且M>2: 2.根结点的儿子数为[2, M]: 3 ...

  9. 数据库索引 引用树形结构 B-数 B+数

    MySQL 为什么使用B+数 B-树和B+树最重要的一个区别就是B+树只有叶节点存放数据,其余节点用来索引,而B-树是每个索引节点都会有Data域. 这就决定了B+树更适合用来存储外部数据,也就是所谓 ...

随机推荐

  1. Linux排查PHP-FPM进程过量常用命令

    命令如下: 查看每个PHP-FPM进程的内存占用:ps -ylC php-fpm –sort:rss 查看消耗内存最多的前 40 个进程:ps auxw|head -1;ps auxw|sort -r ...

  2. Java实现在线预览--openOffice实现

    简介 之前有写了poi实现在线预览的文章,里面也说到了使用openOffice也可以做到,这里就详细介绍一下. 我的实现逻辑有两种: 一.利用jodconverter(基于OpenOffice服务)将 ...

  3. ora121 tips

    1. 900929 - Linux: STORAGE_PARAMETERS_WRONG_SET and "mmap() failed" Solution Increase the ...

  4. Windows下搭建TensorFlow的GPU版本

    1.下载python3.5.2版本并安装(必须是3.5版本,而且3.5后不带字母的版本) 2.使用下面的地址下载tensorflow的GPU版本 http://www.lfd.uci.edu/~goh ...

  5. Spring 实战 第4版 读书笔记

    第一部分:Spring的核心 1.第一章:Spring之旅 1.1.简化Java开发 创建Spring的主要目的是用来替代更加重量级的企业级Java技术,尤其是EJB.相对EJB来说,Spring提供 ...

  6. springboot通过idea打jar包

    springboot打jar包 一.      检查pom文件 <packaging>jar</packaging> 二.      切换到maven窗口 三.      先c ...

  7. nodejs express+nodemon 实现自动刷新 (热更新)

    1.全局安装 nodemon npm i nodemon -g -f 2. 在项目中安装nodemon npm i nodemon -f 3.使用nodemon 在express项目中 运行nodem ...

  8. Linux操作系统启动故障排错之"/sbin/init"文件被删除恢复案例

    Linux操作系统启动故障排错之"/sbin/init"文件被删除恢复案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.删除"/sbin/ini ...

  9. Cloudera Certified Associate Administrator案例之Troubleshoot篇

    Cloudera Certified Associate Administrator案例之Troubleshoot篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.调整日志的进 ...

  10. Uva1349Optimal Bus Route Design(二分图最佳完美匹配)(最小值)

    题意: 给定n个点的有向图问,问能不能找到若干个环,让所有点都在环中,且让权值最小,KM算法求最佳完美匹配,只不过是最小值,所以把边权变成负值,输出时将ans取负即可 这道题是在VJ上交的 #incl ...