Windows 10 Tensorflow 2 gpu正式版安装和更新日志
Windows 10 Tensorflow 2 gpu正式版安装和更新日志
Tensorflow 2.0.0 released on2019年10月1日星期二
Link: https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0
本日志是win 10下tf2.0.0正式版的重新安装/更新的精确技术文档。
Steps as follows:
Step 1: enter into tf installing folder C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64
cd C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64
Step 2: find tf 2 gpu downloading link by pip
pip3 install --ignore-installed --upgrade tensorflow-gpu==2.0.0
pip3 install --ignore-installed --upgrade tensorflow-gpu
note: do not install this time if low network transfer speed if, you can just disconnect your network and copy the source link
Step 3:
Analysis to find the downloading whl source file and download by tools as 迅雷
The downloading speed was about 1 mb/s, time less than 5 minutes
confirm name tensorflow_gpu-2.0.0
result:
step 4 uninstall existing tf prior version, cmd as follows:
pip3 uninstall tensorflow
Step 5 local install whl
pip3 install "D:\tensorflow software\tensorflow_gpu-2.0.0-cp37-cp37m-win_amd64.whl"
feedback:
C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64>pip3 install "D:\tensorflow software\tensorflow_gpu-2.0.0-cp37-cp37m-win_amd64.whl"
Processing d:\tensorflow software\tensorflow_gpu-2.0.0-cp37-cp37m-win_amd64.whl
Requirement already satisfied: absl-py>=0.7.0 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (0.7.1)
Requirement already satisfied: keras-applications>=1.0.8 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (1.0.8)
Requirement already satisfied: astor>=0.6.0 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (0.8.0)
Requirement already satisfied: keras-preprocessing>=1.0.5 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (1.1.0)
Collecting opt-einsum>=2.3.2 (from tensorflow-gpu==2.0.0)
Downloading https://files.pythonhosted.org/packages/b8/83/755bd5324777875e9dff19c2e59daec837d0378c09196634524a3d7269ac/opt_einsum-3.1.0.tar.gz (69kB)
|████████████████████████████████| 71kB 79kB/s
Requirement already satisfied: google-pasta>=0.1.6 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (0.1.7)
Collecting tensorboard<2.1.0,>=2.0.0 (from tensorflow-gpu==2.0.0)
Downloading https://files.pythonhosted.org/packages/9b/a6/e8ffa4e2ddb216449d34cfcb825ebb38206bee5c4553d69e7bc8bc2c5d64/tensorboard-2.0.0-py3-none-any.whl (3.8MB)
|████████████████████████████████| 3.8MB 26kB/s
Requirement already satisfied: wrapt>=1.11.1 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (1.11.2)
Requirement already satisfied: gast==0.2.2 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (0.2.2)
Collecting tensorflow-estimator<2.1.0,>=2.0.0 (from tensorflow-gpu==2.0.0)
Downloading https://files.pythonhosted.org/packages/95/00/5e6cdf86190a70d7382d320b2b04e4ff0f8191a37d90a422a2f8ff0705bb/tensorflow_estimator-2.0.0-py2.py3-none-any.whl (449kB)
|████████████████████████████████| 450kB 19kB/s
Requirement already satisfied: wheel>=0.26 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (0.33.4)
Requirement already satisfied: numpy<2.0,>=1.16.0 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (1.17.0)
Requirement already satisfied: termcolor>=1.1.0 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (1.1.0)
Requirement already satisfied: protobuf>=3.6.1 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (3.9.1)
Requirement already satisfied: grpcio>=1.8.6 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (1.22.0)
Requirement already satisfied: six>=1.10.0 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorflow-gpu==2.0.0) (1.12.0)
Requirement already satisfied: h5py in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from keras-applications>=1.0.8->tensorflow-gpu==2.0.0) (2.9.0)
Requirement already satisfied: werkzeug>=0.11.15 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorboard<2.1.0,>=2.0.0->tensorflow-gpu==2.0.0) (0.15.5)
Requirement already satisfied: markdown>=2.6.8 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorboard<2.1.0,>=2.0.0->tensorflow-gpu==2.0.0) (3.1.1)
Requirement already satisfied: setuptools>=41.0.0 in c:\program files (x86)\microsoft visual studio\shared\python37_64\lib\site-packages (from tensorboard<2.1.0,>=2.0.0->tensorflow-gpu==2.0.0) (41.0.1)
Building wheels for collected packages: opt-einsum
Building wheel for opt-einsum (setup.py) ... done
Created wheel for opt-einsum: filename=opt_einsum-3.1.0-cp37-none-any.whl size=61701 sha256=a20fc7079d3e192beb7519739e120b43b0fabb3b2bdb243a867197ca75a6b31c
Stored in directory: C:\Users\DFKJ3\AppData\Local\pip\Cache\wheels\2c\b1\94\43d03e130b929aae7ba3f8d15cbd7bc0d1cb5bb38a5c721833
Successfully built opt-einsum
Installing collected packages: opt-einsum, tensorboard, tensorflow-estimator, tensorflow-gpu
Found existing installation: tensorboard 1.14.0
Uninstalling tensorboard-1.14.0:
Successfully uninstalled tensorboard-1.14.0
Found existing installation: tensorflow-gpu 2.0.0b1
Uninstalling tensorflow-gpu-2.0.0b1:
Successfully uninstalled tensorflow-gpu-2.0.0b1
Successfully installed opt-einsum-3.1.0 tensorboard-2.0.0 tensorflow-estimator-2.0.0 tensorflow-gpu-2.0.0
Step 6 test using python
C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python37_64>python
Python 3.7.2 (tags/v3.7.2:9a3ffc0492, Dec 23 2018, 23:09:28) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
>>> tensorflow.__version__
'2.0.0'
>>> tf.test.is_gpu_available()
2019-10-01 12:25:37.684543: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-10-01 12:25:37.691337: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2019-10-01 12:25:38.107940: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce 940MX major: 5 minor: 0 memoryClockRate(GHz): 1.2415
pciBusID: 0000:01:00.0
2019-10-01 12:25:38.112862: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-10-01 12:25:38.118783: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-10-01 12:25:40.394489: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-10-01 12:25:40.398096: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2019-10-01 12:25:40.399335: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2019-10-01 12:25:40.401059: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/device:GPU:0 with 1384 MB memory) -> physical GPU (device: 0, name: GeForce 940MX, pci bus id: 0000:01:00.0, compute capability: 5.0)
True
Windows 10 Tensorflow 2 gpu正式版安装和更新日志的更多相关文章
- Windows 10下CUDA及cuDNN的安装 —— Pytorch
Windows 10下CUDA及cuDNN的安装 CUDA简介与下载地址 CUDA(ComputeUnified Device Architecture),是显卡厂商NVIDIA推出的运算平台. CU ...
- Windows 8.1下 MySQL绿色版安装配置与使用
原文:Windows 8.1下 MySQL绿色版安装配置与使用 Mysql-5.6.17-winx64操作步骤: 一.安装MySQL数据库 1.下载. 下载地址:http://downloads.my ...
- Windows 10 开发人员预览版中的新增功能(转自 IT之家)
Windows 10 开发人员预览版中的新增功能 在Win10预览版中安装工具与SDK后,即可着手创建Windows通用应用或先浏览目前的环境与此前相比都发生了什么变化. 应用建模 文件资源管理器: ...
- windows 下 TensorFlow(GPU 版)的安装
windows 10 64bit下安装Tensorflow+Keras+VS2015+CUDA8.0 GPU加速 0. 环境 OS:Windows 10,64 bit: 显卡:NVIDIA GeFor ...
- Windows 10简体中文最新预览版Build 9926
Windows 10 消费者预览版全新特性: • 全新的开始菜单Win 10的开始菜单产生了较大改变,磁贴界面在原有磁贴概念的基础上进行了大幅度的调整,新的磁贴界面开始支持纵向滚动,并可以利用开始按钮 ...
- SQL Server 2016正式版安装(超多图)
微软数据库SQL Server 2016正式版在2016年6月就发布,由于近期工作忙,一直拖到现在才有时间把安装过程写到博客上,分享给大家.本人一直习惯使用英文版,所以版本和截图都是英文版的.废话少说 ...
- Zend Studio 10正式版破解(2013-02-26更新)
Zend Studio 10正式版注册破解(2013-02-26完成更新) 1.以下方法仅供技术交流学习,请勿非法使用,如长期使用请支持购买正版. 2.若你还没有最新安装程序? ZendStudio ...
- Visual Studio 2019 (VS2019)正式版安装 Ankh SVN和VisualSVN插件
VS2019 正式版最近刚刚推出来,目前 Ankhsvn 还不支持,它最高只支持 VS2017,全网搜索了一下,也没有找到.在 Stackoverflow 上看了一下,找到这篇问答: 自己按照这种方法 ...
- Visual Studio 2019 (VS2019)正式版安装 VisualSVN Server 插件
VS2019 正式版最近刚刚推出来,目前 Ankhsvn 还不支持,它最高只支持 VS2017,全网搜索了一下,也没有找到.在 Stackoverflow 上看了一下,找到这篇问答: 自己按照这种方法 ...
随机推荐
- Java 十大排序算法
目录: 1.冒泡排序(Bubble Sort) 2.选择排序(Selection Sort) 3.插入排序(Insertion Sort) 4.希尔排序(Shell Sort) 5.归并排序(Merg ...
- S3cmd
一:安装方法 #wget http://nchc.dl.sourceforge.net/project/s3tools/s3cmd/1.0.0/s3cmd-1.0.0.tar.gz #tar -zxf ...
- ModelForm的简单使用-注册用modelform编写
1.前端的ajax代码不用改动 2.modelform,在原来基础上稍作改动 from django import forms from app01.models import UserInfo fr ...
- P2018 消息传递[dp]
题目描述 巴蜀国的社会等级森严,除了国王之外,每个人均有且只有一个直接上级,当然国王没有上级.如果A是B的上级,B是C的上级,那么A就是C的上级.绝对不会出现这样的关系:A是B的上级,B也是A的上级. ...
- 行为型模式(六) 状态模式(State)
一.动机(Motivate) 在软件构建过程中,某些对象的状态如果改变,其行为也会随之而发生变化,比如文档处于只读状态,其支持的行为和读写状态支持的行为就可能完全不同. 如何在运行时根据对象的状态 ...
- LightOJ - 1236 - Pairs Forming LCM(唯一分解定理)
链接: https://vjudge.net/problem/LightOJ-1236 题意: Find the result of the following code: long long pai ...
- linux的计划任务操作
1.cron服务来设置 计划任务查看与设置命令:crontab 包括条目: 分钟m:0-59 小时h:0-23 月日dom:1-31 月份mon:1-12 星期dow:0-7 例子: 每隔2小时处理一 ...
- 洛谷 P1191 矩形 题解
P1191 矩形 题目描述 给出一个 \(n \times n\)的矩阵,矩阵中,有些格子被染成白色,有些格子被染成黑色,现要求矩阵中白色矩形的数量 输入格式 第一行,一个整数\(n\),表示矩形的大 ...
- 机器学习---用python实现感知机算法和口袋算法(Machine Learning PLA Pocket Algorithm Application)
之前在<机器学习---感知机(Machine Learning Perceptron)>一文中介绍了感知机算法的理论知识,现在让我们来实践一下. 有两个数据文件:data1和data2,分 ...
- 建立自己的键盘栈(shortcutkeyStack)
建立自己的键盘栈(shortcutkeyStack) 作为一名开发者, 快捷键是必不可少的, 并且各种开发工具都有提供快捷键. 但是各种工具(IDE,编辑器)因为历史或者其他不可抗原因(比如键盘的布局 ...