Bet Class

class strats.Bet(inp)[source]

Here is an example of the expected string input on instantiation of the class. It is expecting a string using the POST method in a cgi script receiving a textarea input from an HTML form.

As one can see, the expected text that looks like Python code. This means that these variables can be immediately “compiled” into the code for the class upon instantiation. This is an example of a string for betting on the trifecta that is passed to the class instantiation code, __init__().

self.bet_type = "Trifecta"
self.nraces = 1
self.horse_ids.append([1,2,4,5,6,8,9])
self.user_odds.append([2.0,4.2,4.2,5.5,5.9,9.4,11.0])
self.tab_odds.append([3.9,7.2,4.2,5.5,5.9,9.4,11.0])
self.jockeys.append([1,2,3,4,5,6,7])
self.trainers.append([1,2,3,4,5,6,7])
self.standouts_1.append([1,2])
self.standouts_2.append([1,2,4,5])
self.standouts_3.append([])
self.value = True
self.scale_var = 100
user_div_range = (0,750)
tab_div_range = (750,5000)

Note

  • I think there needs to be some variables to describe what to do with the jockey and trainer info?
  • I don’t understand max_tab_market_odds well enough to code it.
  • Do we need the client’s ID?
  • Do we need the Race ID?
  • I think we will need to establish an order in which the rules are applied.
  • Do we need to specify the stake for flat staking?
  • Is there some kind of incosistency between enforcing total outlay as a restriction and the staking rules including round the rounding rules?
__init__(inp)[source]
Parameters: inp (string) – user input as string probably from digesting a cgi transmission of a textarea html form element
Returns: None
__module__ = 'strats'
bet_type = None

One of Quinella, Exacta, Trifecta, Pick 4, Pick 6, Quaddy, Superfecta

error_message(msg)[source]

This routine sends a error_message to the user. (usually because there is something wrong with the input.)

Return type: None
Parameters: msg – error_message string
Returns: nil
fifth = []

fifth place standouts (after [] substitution)

find_common_combinations_and_sort(tabresuserres)[source]

Due to restrictions on win price lines and trifecta probabilities is is possible for the tab and user lists of probabilites mto not have the same combinations. This routine finds the common combinations and applies the overlay if specified.

Parameters:
  • tabres – list of tuples of (combinations,tab probabilities)
  • userres –
Returns:

list of tuples containing (combination, tab probability, user probability)

first = []

first place standouts (after [] substitution)

flat_stakes = True

Flat stakes flag, if True, must define stake

fourth = []

fourth place standouts (after [] substitution)

get_multi_tab_restricted_ids(pwn)[source]

This routine restricts a price line according to

Return type:

list of ints

Parameters:
  • p – user or tab probability from win price line
  • w – one of [tabodds1, tabodds2, ..., userodds1, userodds2,...] odds limits for price line and position
  • n – for nth race
Returns:

tab ids consistent with odds restrictions

get_tab_restricted_ids(pw)[source]

This routine restricts a price line according to

Parameters:
  • p – user or tab probability from win price line
  • w – one of [tabodds1, tabodds2, ..., userodds1, userodds2,...] odds limits for price line and position
Returns:

tab ids consistent with odds restrictions

handle_both_price_lines(tabresuserres)[source]

Once the combination probabilities are calculated (including standouts and odds restrctions), this routine applies all of the other rules for betting if both tab and user price lines are provided. The logic is

  • convert (id,prob) tuples into dictionaries
  • find common TAB ids (odds restrictions enforce this)
  • restrict combinations for overlay if required
  • restrict combination by % number, % value, or total stake
  • calculate staking for each combination according to flat_staking flag and rounding option
  • print results
Parameters:
  • tabres – list of tuples (combinations, tab probabilities)
  • userres – list of tuples (combinations, user probabilities)
Returns:

None

Return type:

None

handle_exacta()[source]

This routine handles the details of impmenting the rules when betting on the exacta.

Return type: None
Returns: number of bets, outlay, list of combinations
handle_pick4()[source]

This routine handles the details of impmenting the rules when betting on the pick 4 pools.

Return type: None
Returns: number of bets, outlay, list of combinations
handle_pick6()[source]

This routine handles the details of impmenting the rules when betting on the pick 6 pools.

Return type: None
Returns: number of bets, outlay, list of combinations
handle_quaddie()[source]

This routine handles the details of impmenting the rules when betting on the pick 4 pools.

Return type: None
Returns: number of bets, outlay, list of combinations
handle_quinella()[source]

This routine handles the details of impmenting the rules when betting on the exacta.

Return type: None
Returns: number of bets, outlay, list of combinations
handle_single_price_line(singleres)[source]

Once the combination probabilities are calculated (including standouts and odds restrctions), this routine applies all of the other rules for betting if both tab and user price lines are provided. The logic is

  • restrict combination by % number, % value, or total stake
  • calculate staking for each combination according to flat_staking flag and rounding option
  • print results
Parameters: singleres – list of tuples (combinations, tab or user probabilities)
Returns: None
Return type: None
handle_superfecta()[source]

This routine handles the details of impmenting the rules when betting on tsuperfecta.

Return type: None
Returns: number of bets, outlay, list of combinations
handle_trifecta()[source]

This routine handles the details of impmenting the rules when betting on the trifecta.

Return type: None
Returns: number of bets, outlay, list of combinations
horse_ids = []

list of lists of TAB ids for horses (one list for each race)

jockey_list = []

list of lists of jockeys (one for each race) This parameter is only for multiple race bets.

max_tab_market_odds = (0, 0)

I don’t know how to define this. Currently unimplemented

multi_race_preprocess(nraces)[source]

This routine handles the preprocessing for multiple race betting pools:

  • nraces needs to be 1
  • at least one of user odds or TAB odds must be provided
  • ensure that odds are only for one race
  • list of horse TAB ids must be provided and be of same length as odds provided
  • check to make sure jockey and trainer info not provided

Process input in the following order

  • remove scratchings, taking care to delete runner info from end of the appropriate lists
  • scale TAB and/or user odds
  • process standouts
Parameters: nraces (int) – number of races for pool
Returns: Flag for tab divs, flag for user divs, tab prob list, user prob list
multi_race_scale_odds(ntaboddsnuserodds)[source]

This routine scales the odds and calculates the relevant probability of the user and/or tab win price line.

Parameters:
  • ntabodds – 1 if have tab odds, 0 otherwise
  • nuserodds – 1 if have user odds, 0 otherwise
Returns:

tab prob list, user prob list

multi_race_scratchings(ntaboddsnuserodds)[source]
Parameters:
  • ntabodds – 1 if tab odds present, 0 otherwise
  • nuserodds – 1 if user odds present, 0 otherwise
Returns:

None

multi_race_validation(nraces)[source]

This routine checks for a number of possible input errors for a single race pool.

Returns:  
nraces = 0

number of races for which data is input

outlay_amount = 10000000.0

cap on outlay be in order of probability

overlay = False

True if value betting; else False

overlay_scale = 1.0

If value betting, bet if (user_div * overlay_scale) <= tab_div

percent_by_number = 0

Top percent of bets by number accepted after all other conditions applied if 100, accept all, if <= 0 dont’t calculate

percent_by_value = 0

Top percent of bets by value accepted after all other conditions applied if 100, accept all, , if <= 0, don’t calculate

prob_exacta(probs1s2sort=False)[source]

This routine calculates the normalized exacta probabilites given an input list of horse ids and normalized win probabilities.

If pp is the vector of normalized win probabilities derived from a price line then the probability of runner ii (first) and jj (second) as the winning combination is given by

Return type:

list

Parameters:
  • prob – list of tuples of form (id,win probability)
  • s1 – list of allowed first place ids defined by odds range
  • s2 – list of allowed second place ids defined by odds range
  • sort – Boolean if True, result is sorted, highest probability first
Returns:

list of tuples of form ((id1,id2),exacta_probability)

So if we input prob as:

(1, 0.15557814847495188)
(2, 0.20438859122263553)
(3, 0.3708534602327072)
(4, 0.19948464099114765)
(5, 0.034061786039927267)
(6, 0.021204203862783776)
(7, 0.0031196067348740163)
(8, 0.01130956244097265)

The first few exacta probabilities (if unsorted) would be:

(1, 2) 0.0476639105054
(1, 3) 0.117045542403
(1, 4) 0.0461010957068
(1, 5) 0.00569989602184
(1, 6) 0.00345321559886
(1, 7) 0.000488654491335
(1, 8) 0.0018032135443

If sorted, the first few exacta probabilities would be:

(3, 2) 0.12047784021
(3, 4) 0.11758718311
(2, 3) 0.0952703989043
(4, 3) 0.0924149281363
(3, 1) 0.0917062894757
(1, 3) 0.0683268612653
(2, 4) 0.0512466064374
prob_pick4(probs1s2s3s4sort=False)[source]

This routine calculates the normalized first four probabilites given an input list of horse ids and normalized win probabilities.

If pp is the vector of normalized win probabilities derived from a price line then the probability of runner ii (first), jj (second), kk (third), and ll (fourth)as the winning combination is given by

Return type:

list

Parameters:
  • prob – list of tuples of form (id,win probability)
  • s1 – list of allowed first place ids defined by odds range
  • s2 – list of allowed second place ids defined by odds range
  • s3 – list of allowed third place ids defined by odds range
  • s4 – list of allowed fourth place ids defined by odds range
  • sort – Boolean if True, result is sorted, highest probability first
Returns:

list of tuples of form ((id1,id2,id3,id4),pick 4 probability)

So if we input prob as:

(1, 0.15557814847495188)
(2, 0.20438859122263553)
(3, 0.3708534602327072)
(4, 0.19948464099114765)
(5, 0.034061786039927267)
(6, 0.021204203862783776)
(7, 0.0031196067348740163)
(8, 0.01130956244097265)

The first few pick 4 probabilities (if unsorted) would be:

(1, 2, 3, 4) 0.0161700951381
(1, 2, 3, 5) 0.00276102620283
(1, 2, 3, 6) 0.00171879896159
(1, 2, 3, 7) 0.000252873291125
(1, 2, 3, 8) 0.000916745769159
(1, 2, 4, 3) 0.00988009673754
(1, 2, 4, 5) 0.000907457465589
(1, 2, 4, 6) 0.000564912041741
(1, 2, 4, 7) 8.3111038803e-05
(1, 2, 4, 8) 0.000301303838195

If sorted, the first few pick 4 probabilities would be:

(1, 2, 3, 4) 0.0161700951381
(1, 2, 3, 5) 0.00276102620283
(1, 2, 3, 6) 0.00171879896159
(1, 2, 3, 7) 0.000252873291125
(1, 2, 3, 8) 0.000916745769159
(1, 2, 4, 3) 0.00988009673754
(1, 2, 4, 5) 0.000907457465589
(1, 2, 4, 6) 0.000564912041741
(1, 2, 4, 7) 8.3111038803e-05
(1, 2, 4, 8) 0.000301303838195
prob_pick6(probs1s2s3s4s5s6sort=False)[source]

This routine calculates the normalized first six probabilites given an input list of horse ids and normalized win probabilities.

If pp is the vector of normalized win probabilities derived from a price line then the probability of runner ii (first), jj (second), kk (third), :param s1: ll (fourth), mm (fifth), and nn (sixth) as the winning combination is given by

Return type:

list

Parameters:
  • prob – list of tuples of form (id,win probability)
  • s1 – list of allowed first place ids defined by odds range
  • s2 – list of allowed second place ids defined by odds range
  • s3 – list of allowed third place ids defined by odds range
  • s4 – list of allowed fourth place ids defined by odds range
  • s5 – list of allowed fifth place ids defined by odds range
  • s6 – list of allowed sixth place ids defined by odds range
  • sort – Boolean if True, result is sorted, highest probability first
Returns:

list of tuples of form ((id1,id2,id3,id4,id5,id6),pick 6 probability)

So if we input prob as:

(1, 0.15557814847495188)
(2, 0.20438859122263553)
(3, 0.3708534602327072)
(4, 0.19948464099114765)
(5, 0.034061786039927267)
(6, 0.021204203862783776)
(7, 0.0031196067348740163)
(8, 0.01130956244097265)

The first few pick 6 probabilities (if unsorted) would be:

(1, 2, 3, 4, 5, 6) 0.00470264737409
(1, 2, 3, 4, 5, 7) 0.000691863298187
(1, 2, 3, 4, 5, 8) 0.00250822357959
(1, 2, 3, 4, 6, 5) 0.00345572050302
(1, 2, 3, 4, 6, 7) 0.000316498052757
(1, 2, 3, 4, 6, 8) 0.00114740568101
(1, 2, 3, 4, 7, 5) 0.000370307449629
(1, 2, 3, 4, 7, 6) 0.000230524454726

If sorted, the first few pick 6 probabilities would be:

(3, 2, 4, 1, 5, 6) 0.0113643296974
(3, 4, 2, 1, 5, 6) 0.0112346228107
(3, 2, 1, 4, 5, 6) 0.00951066959114
(3, 4, 1, 2, 5, 6) 0.0092338952488
(2, 3, 4, 1, 5, 6) 0.00898658393663
(4, 3, 2, 1, 5, 6) 0.00882959207139
(3, 1, 2, 4, 5, 6) 0.00853040992409
(3, 1, 4, 2, 5, 6) 0.00837778246743
Timings of routine with n sized fields
n Unsorted (sec) Sorted (sec)
6 0.002 0.004
8 0.037 0.128
10 0.247 1.12
12 1.10 5.60
14 3.95 23.8
16 13.1 97.2
18 62.3  
20 Memory  
prob_quaddie(idsprobs1s2s3s4sort=False)[source]

This routine calculates the quaddie probabilites given an input list of horse ids and normalized win probabilities for each of the four races

If pp is the vector of normalized win probabilities derived from a price line then the probability of runner ii (in the first race), jj (in the second race), kk (in the third race), and ll (in the fourth race)as the winning combination is given by

Parameters:
  • sort – if True sor by increasing probability
  • ids – list of lists of TAB horse ids
  • prob – list of lists of tuples of win probability) for each race
  • s1 – list of horse ids to be considered for win in first race
  • s2 – list of horse ids to be considered for win in second race
  • s3 – list of horse ids to be considered for win in third race
  • s4 – list of horse ids to be considered for win in fourth race
Return type:

list

Returns:

list of tuples of form ((id1,id2,id3,id4),quaddie probability)

So if we input the four race probabilities as:

 1 0.15558  1 0.86564  1 0.04397  1 0.76204
2 0.20439 2 0.02050 2 0.04988 2 0.10846
3 0.37085 3 0.02690 3 0.85491 3 0.08160
4 0.19948 4 0.06478 4 0.04690 4 0.01898
5 0.03406 5 0.01119 5 0.00072 5 0.01083
6 0.02120 6 0.00605 6 0.00096 6 0.01692
7 0.00312 7 0.00172 7 0.00267 7 0.00117
8 0.00788 8 0.00068 8 0.00000
9 0.00180 9 0.00230 9 0.00001
10 0.00068 10 0.00024 10 0.00000
11 0.00009 11 0.00000
12 0.00087

The first few quaddie probabilities (if unsorted) would be:

(1, 1, 1, 1) 0.00451204255393
(1, 1, 1, 2) 0.000642180234069
(1, 1, 1, 3) 0.000483129743111
(1, 1, 1, 4) 0.000112363248935
(1, 1, 1, 5) 6.41234861406e-05
(1, 1, 1, 6) 0.000100176763996
(1, 1, 1, 7) 6.93229347721e-06
(1, 1, 1, 8) 1.50345086741e-08
(1, 1, 1, 9) 5.73763223463e-08

If sorted, the first few quaddie probabilities would be:

(3, 1, 3, 1) 0.2091383481
(2, 1, 3, 1) 0.115262487539
(4, 1, 3, 1) 0.112496963793
(1, 1, 3, 1) 0.0877364254662
(3, 1, 3, 2) 0.0297657904886
(3, 1, 3, 3) 0.0223936177872
(5, 1, 3, 1) 0.0192087345262
(2, 1, 3, 2) 0.0164048300393
(4, 1, 3, 2) 0.0160112245568
(3, 4, 3, 1) 0.0156519771072
Timings of routine with n sized fields for 4 races
n Unsorted (sec) Sorted (sec)
2 0 0
4 0 .003
6 .002 .007
8 .003 .018
10 .006 .049
12 .012 .109
14 .02 .215
16 .037 .40
18 .059 .648
20 .288 2.62
prob_quinella(probs1s2sort=False)[source]

This routine calculates the normalized quinella probabilites given an input list of horse ids and normalized win probabilities.

If pp is the vector of normalized win probabilities derived from a price line then the probability of runner ii and jj as the winning combination is given by

Return type:

list

Parameters:
  • prob – list of tuples of form (id,win probability)
  • s1 – list of allowed first place ids defined by odds range
  • s2 – list of allowed second place ids defined by odds range
  • sort – Boolean if True, result is sorted, highest probability first
Returns:

list of tuples of form ((id1,id2),quinella_probability)

So if we input prob as:

(1, 0.15557814847495188)
(2, 0.20438859122263553)
(3, 0.3708534602327072)
(4, 0.19948464099114765)
(5, 0.034061786039927267)
(6, 0.021204203862783776)
(7, 0.0031196067348740163)
(8, 0.01130956244097265)

The first few quinella probabilities (if unsorted) would be:

(1, 0.15557814847495188)
(2, 0.20438859122263553)
(3, 0.3708534602327072)
(4, 0.19948464099114765)
(5, 0.034061786039927267)
(6, 0.021204203862783776)
(7, 0.0031196067348740163)
(8, 0.01130956244097265)

If sorted, the first few quinella probabilities would be:

(2, 3) 0.215748239115
(3, 4) 0.210002111247
(1, 3) 0.160033150741
(2, 4) 0.102179276603
(1, 2) 0.0776242539698
(1, 4) 0.0755228299148
(3, 5) 0.0331552537388
(3, 6) 0.0205329272655
(2, 5) 0.0159576376265
prob_superfecta(idsprobs1s2s3s4s5s6sort=False)[source]

This routine calculates the quaddie probabilites given an input list of horse ids and normalized win probabilities for each of the four races

If pp is the vector of normalized win probabilities derived from a price line then the probability of runner ii (in the first race), jj (in the second race), kk (in the third race), and ll (in the fourth race)as the winning combination is given by

Parameters:
  • sort – if True sor by increasing probability
  • ids – list of lists of TAB horse ids
  • prob – list of lists of tuples of win probability) for each race
  • s1 – list of horse ids to be considered for win in first race
  • s2 – list of horse ids to be considered for win in second race
  • s3 – list of horse ids to be considered for win in third race
  • s4 – list of horse ids to be considered for win in fourth race
  • s5 – list of horse ids to be considered for win in fifth race
  • s6 – list of horse ids to be considered for win in sixth race
Return type:

list

Returns:

list of tuples of form ((id1,id2,id3,id4,id5,id6),quaddie probability)

prob_trifecta(probs1s2s3sort=False)[source]

This routine calculates the trifecta probabilites given an input list of horse ids and normalized win probabilities.

If pp is the vector of win probabilities derived from a price line then the probability of runner ii (first), jj (second), and kk (third) as the winning combination is given by

Return type:

list

Parameters:
  • prob – list of tuples of form (id,win probability)
  • s1 – list of allowed first place ids defined by odds range
  • s2 – list of allowed second place ids defined by odds range
  • s3 – list of allowed third place ids defined by odds range
  • sort – Boolean if True, result is sorted, highest probability first
Returns:

list of tuples of form ((id1,id2,id3),trifecta_probability)

So if we input prob as:

(1, 0.15557814847495188)
(2, 0.20438859122263553)
(3, 0.3708534602327072)
(4, 0.19948464099114765)
(5, 0.034061786039927267)
(6, 0.021204203862783776)
(7, 0.0031196067348740163)
(8, 0.01130956244097265)

The first few trifecta probabilities (if unsorted) would be:

(1, 2, 3) 0.0218195393628
(1, 2, 4) 0.0117368811219
(1, 2, 5) 0.0020040597189
(1, 2, 6) 0.00124757083445
(1, 2, 7) 0.000183545225398
(1, 2, 8) 0.000665409573642
(1, 3, 2) 0.0294893645215
(1, 3, 4) 0.0287818182974

If sorted, the first few trifecta probabilities would be:

(3, 2, 4) 0.0565815867228
(3, 4, 2) 0.0559357922362
(2, 3, 4) 0.0447430857683
(3, 2, 1) 0.0441280013156
(4, 3, 2) 0.0439614427612
(3, 4, 1) 0.0425776553257
(3, 1, 2) 0.0395797516406
(3, 1, 4) 0.0386301040548
(2, 3, 1) 0.0348951498537
process_multi_race_standouts()[source]

Define single race standouts for first, second, third, fourth, fifth, sixth

Returns: None
process_single_race_standouts()[source]

Define single race standouts for first, second, third, fourth, fifth, sixth

Returns: None
rounding = 'Round Up'

type of rounding, one of [“Exact”,”Round Up”,”Round_Down”,”Nearest”]

roundit(y)[source]
Parameters: y – stake amount
Returns: stake amount rounded according to rounding parameter
scale_tab = 0

scale TAB market by % (0 is normalized, -1 unscaled, otherwise < 100)

scale_user = 0

scale user market by % (0 is normalized, -1 unscaled, otherwise < 100)

second = []

second place standouts (after [] substitution)

single_race_preprocess()[source]

This routine handles the preprocessing for single race betting pools:

  • nraces needs to be 1
  • at least one of user odds or TAB odds must be provided
  • ensure that odds are only for one race
  • list of horse TAB ids must be provided and be of same length as odds provided
  • check to make sure jockey and trainer info not provided

Process input in the following order

  • remove scratchings, taking care to delete runner info from end of the appropriate lists
  • scale TAB and/or user odds
  • process standouts
Returns: Flag for tab divs, flag for user divs, tab prob list, user prob list
single_race_scale_odds(ntaboddsnuserodds)[source]

This routine scales the odds and calculates the relevant probability of the user and/or tab win price line.

Parameters:
  • ntabodds – 1 if have tab odds, 0 otherwise
  • nuserodds – 1 if have user odds, 0 otherwise
Returns:

tab prob list, user prob list

single_race_scratchings(ntaboddsnuserodds)[source]
Parameters:
  • ntabodds – 1 if tab odds present, 0 otherwise
  • nuserodds – 1 if user odds present, 0 otherwise
Returns:

None

single_race_validation()[source]

This routine checks for a number of possible input errors for a single race pool.

Returns:  
sixth = []

sixth place standouts (after [] substitution)

stake = 0.5

Amount to stake on each combination if flat_stakes is True

standouts_1 = []

list of standouts for first place. Generally speaking, if standouts are given for any place in one race pools or any leg for multi race pools, the rest must be specified as well. If one wants to bet the field then the entry shoud be the empty list.

example for a single race, [1,3,4]

Alternatively for multi-race bets, it standouts for first in the first race

standouts_2 = []

list of standouts for second place. Alternatively for multi-race bets, it standouts for first in the second race

standouts_3 = []

list of standouts for third place. Alternatively for multi-race bets, it standouts for first in the third race

standouts_4 = []

list of standouts for fourth place. Alternatively for multi-race bets, it standouts for first in the fourth race

standouts_5 = []

list of standouts for fifth place. Alternatively for multi-race bets, it standouts for first in the fifth race

standouts_6 = []

list of standouts for sixth place. Alternatively for multi-race bets, it standouts for first in the sixth race

tab_div_range = False

Dividend range for TAB price line; eg, (100,1000), or False for no check

tab_odds = []

list of lists of TAB odds (one list for each race)

tabodds1 = []

1st favourite restricted to (min,max) tab odds, empty list accept all odds

tabodds2 = []

2nd favourite restricted to (min,max) tab odds, empty list accept all odds

tabodds3 = []

3rd favourite restricted to (min,max) tab odds, empty list accept all odds

tabodds4 = []

4th favourite restricted to (min,max) tab odds, empty list accept all odds

tabodds5 = []

5th favourite restricted to (min,max) tab odds, empty list accept all odds

tabodds6 = []

6rd favourite restricted to (min,max) tab odds, empty list accept all odds

takeout = 100

Takeout amount

takeout_priceline = 'tab'

price line use for takeout cqalculation, must be one of [“tab”,”user”]

third = []

third place standouts (after [] substitution)

trainer_list = []

list of lists of trainer lists (one for each race) This parameter is only for multiple race bets.

user_div_range = False

Dividend range for user price line; eg, (100,1000), or False for no check

user_odds = []

list of lists of user odds (one list for each race)

userodds1 = []

1st favourite restricted to (min,max) user odds, empty list accept all odds

userodds2 = []

2nd favourite restricted to (min,max) user odds, empty list accept all odds

userodds3 = []

3rd favourite restricted to (min,max) user odds, empty list accept all odds

userodds4 = []

4th favourite restricted to (min,max) user odds, empty list accept all odds

userodds5 = []

5th favourite restricted to (min,max) user odds, empty list accept all odds

userodds6 = []

6rd favourite restricted to (min,max) user odds, empty list accept all odds

Odds calculation required for the python strategy library的更多相关文章

  1. Python Standard Library

    Python Standard Library "We'd like to pretend that 'Fredrik' is a role, but even hundreds of vo ...

  2. CentOS 6.5 Python Image Library 配置

    转自:http://www.cnblogs.com/way_testlife/archive/2011/04/17/2019013.html PIL 下载: http://www.pythonware ...

  3. Python语言中对于json数据的编解码——Usage of json a Python standard library

    一.概述 1.1 关于JSON数据格式 JSON (JavaScript Object Notation), specified by RFC 7159 (which obsoletes RFC 46 ...

  4. 使用Python Shapefile Library创建和编辑Shapefile文件

    介绍 shapefile是GIS中非常重要的一种数据类型,在ArcGIS中被称为要素类(Feature Classes),主要包括点(point).线(polyline)和多边形(polygon).P ...

  5. Windows环境下安装PIL(Python Imaging Library)库

    微信小程序--跳一跳最近火了一把,于是整了个辅助进行试玩,不过在运行程序过程中出现了个报错如图所示: 显然是缺少PIL(Python Imaging Library)库文件,于是通过pip命令行进行安 ...

  6. SimpleCV install and "You need the python image library to save by filehandle"

    2015年5月3日 22:15:43 在win7下安装了python.simplecv,试着运行simplecv官网第一个hello world程序结果报错,提示说%python%/lib/site- ...

  7. The Python Standard Library

    The Python Standard Library¶ While The Python Language Reference describes the exact syntax and sema ...

  8. pycurl,Python cURL library

    pycurl — A Python interface to the cURL library Pycurl包是一个libcurl的Python接口.pycurl已经成功的在Python2.2到Pyt ...

  9. 《The Python Standard Library》——http模块阅读笔记1

    官方文档:https://docs.python.org/3.5/library/http.html 偷个懒,截图如下: 即,http客户端编程一般用urllib.request库(主要用于“在这复杂 ...

随机推荐

  1. 【spring boot】【redis】spring boot基于redis的LUA脚本 实现分布式锁

    spring boot基于redis的LUA脚本 实现分布式锁[都是基于redis单点下] 一.spring boot 1.5.X 基于redis 的 lua脚本实现分布式锁 1.pom.xml &l ...

  2. ASP.NET Core应用程序的参数配置及使用(转载)

    本文结构 提前准备 参数配置方式 appsettings.json 环境变量 命令行参数 在控制器中使用配置参数 注入IConfiguration对象 注入IOptions对象 总结 应用程序的开发不 ...

  3. NET Core 导入web.config配置文件

    1.首先需要在NET Core项目中引入System.Configuration.ConfigurationManager,它可以读取web.config中的相关配置信息. 2. 将web.confi ...

  4. Java数组转集合与集合转数组的坑

    在Java中将数组转为集合,会用到Arrays.asList()的方法,然而,这个方法却与我们的预期期望存在一些出入,当用到asList方法将数组转化成List列表时,对得到的List列表进行add( ...

  5. jquery 获取后台实时数据

    第一步.提醒后台处理数据1.$.ajax({}) 提交数据,2.后台返回状态3.后台开始处理数据,并每秒记录状态到 data.json 文件4.前台每秒请求 data.json 文件,直到处理完成 第 ...

  6. Spring Boot 的自动配置探究、自制一个starter pom

    //TODO @Conditional @Condition

  7. Socker编程之TCP

    一:TCP介绍 TCP协议,传输控制协议(英语:Transmission Control Protocol,缩写为 TCP)是一种面向连接的.可靠的.基于字节流的传输层通信协议,由IETF的RFC 7 ...

  8. 物联网学习笔记三:物联网网关协议比较:MQTT 和 Modbus

    物联网学习笔记三:物联网网关协议比较:MQTT 和 Modbus 物联网 (IoT) 不只是新技术,还是与旧技术的集成,其关键在于通信.可用的通信方法各不相同,但是,各种不同的协议在将海量“事物”连接 ...

  9. 【转载】C#如何获取DataTable中某列的数据类型

    在C#的数据表格DataTable的操作中,有时候因为业务需要,我们需要获取到DataTable所有列或者某一列的数据类型,此时我们可以通过DataTable中的Columns属性对象的DataTyp ...

  10. 如何显示IntelliJ IDEA工具的Run Dashboard功能(转)

    从 JetBrains released IntelliJ IDEA 2017.2.1 版本之后,新出的功能‘Run Dashboard,它能非常方便的提供开发人员查看本地springboot服务运行 ...