题目链接

LOJ:https://loj.ac/problem/6433

Solution

注意到最大前缀要满足什么性质,假设序列\(a[1..n]\)的最大前缀是\(s_x\),那么显然要满足所有\(x\)结尾的后缀和都为正,且所有\(x\)开头的前缀和都为负,\(0\)的情况不影响。

有了这个转化之后就好做了,直接状压,设\(g[s]\)为选了\(s\)这些数,能构成多少种序列,使得所有前缀都为负或\(0\)。

转移直接暴力枚举当前哪一个填最后一位就好了。

设\(f[s]\)表示选了\(s\)这些数,能构成多少种序列使得除了整个序列以外所有后缀都为正,转移和上面类似。

然后统计答案直接乘起来就好了。

复杂度\(O(2^n\cdot n)\)。

#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define lf double
#define ll long long #define pii pair<int,int >
#define vec vector<int > #define pb push_back
#define mp make_pair
#define fr first
#define sc second #define FOR(i,l,r) for(int i=l,i##_r=r;i<=i##_r;i++) const int maxn = (1<<20)+10;
const int inf = 1e9;
const lf eps = 1e-8;
const int mod = 998244353; int add(int x,int y) {return x+y>=mod?x+y-mod:x+y;}
int del(int x,int y) {return x-y<0?x-y+mod:x-y;}
int mul(int x,int y) {return 1ll*x*y-1ll*x*y/mod*mod;} int s[maxn],f[maxn],g[maxn],a[22],n,all,ans; int main() {
read(n);FOR(i,0,n-1) read(a[i]);all=1<<n,all--;
FOR(i,1,all) s[i]=a[__builtin_ctz(i)]+s[i^(i&-i)];g[0]=1;
FOR(i,1,all) if(s[i]<=0) FOR(j,0,n-1) if((i>>j)&1) g[i]=add(g[i],g[i^(1<<j)]);
FOR(i,0,n-1) f[1<<i]=1;
FOR(i,1,all) {
if(s[i]>0) FOR(j,0,n-1) if(!((i>>j)&1)) f[i^(1<<j)]=add(f[i^(1<<j)],f[i]);
ans=add(ans,mul(s[i]%mod+mod,mul(f[i],g[all-i])));
}write(ans);
return 0;
}

[LOJ6433] [PKUSC2018] 最大前缀和的更多相关文章

  1. LOJ6433 [PKUSC2018] 最大前缀和 【状压DP】

    题目分析: 容易想到若集合$S$为前缀时,$S$外的所有元素的排列的前缀是小于$0$的,DP可以做到,令排列前缀个数小于0的是g[S]. 令f[S]表示$S$是前缀,转移可以通过在前面插入元素完成. ...

  2. [LOJ6433][PKUSC2018]最大前缀和:状压DP

    分析 我们让每个数列在第一个取到最大前缀和的位置被统计到. 假设一个数列在\(pos\)处第一次取到最大前缀和,分析性质,有: 下标在\([1,pos]\)之间的数形成的数列的每个后缀和(不包括整个数 ...

  3. [PKUSC2018]最大前缀和

    [PKUSC2018]最大前缀和 题目大意: 有\(n(n\le20)\)个数\(A_i(|A_i|\le10^9)\).求这\(n\)个数在随机打乱后最大前缀和的期望值与\(n!\)的积在模\(99 ...

  4. BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

    BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...

  5. [PKUSC2018]最大前缀和——状压DP

    题目链接: [PKUSC2018]最大前缀和 设$f[S]$表示二进制状态为$S$的序列,任意前缀和都小于等于$0$的方案数. 设$g[S]$表示二进制状态为$S$的序列是整个序列的最大前缀和的方案数 ...

  6. 【PKUSC2018】【loj6433】最大前缀和 状压dp

    这题吼啊... 然而还是想了$2h$,写了$1h$. 我们发现一个性质:若一个序列$p$能作为前缀和,那么在序列$p$中,包含序列$p$最后一个数的所有子序列必然都是非负的. 那么,我们 令$f[i] ...

  7. BZOJ5369:[PKUSC2018]最大前缀和(状压DP)

    Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...

  8. BZOJ5369 [Pkusc2018]最大前缀和

    题意 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C是一个非常有自知之 ...

  9. bzoj 5369: [Pkusc2018]最大前缀和

    Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于是小C决定把序列随机打乱,然后取序列的最大前缀和作为答案. 小C ...

随机推荐

  1. CF1098E Fedya the Potter

    CF1098E Fedya the Potter 题意:有一个序列\(A\). 对所有\(1\leq l\leq r\leq |A|\),将\(\gcd_{i=l}^{r}A_i\)加入\(B\)中. ...

  2. 洛谷P2730 [IOI]魔板 Magic Squares

    题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...

  3. rust学习(二)

    play on line match if #![allow(unused)] fn write_bar(size: u64){ match size{ o => println!(" ...

  4. 【洛谷】P1032 字串变换

    题目地址:https://www.luogu.org/problemnew/show/P1032 洛谷训练场BFS的训练题呀. “BFS不就是用队列的思想去遍历一切情况嘛.我已经不是小孩子了,我肯定能 ...

  5. 微信小程序 wxs的简单应用

    Demo地址:微信小程序wxs的简单应用 案例分析 张三.李四.王五,各自分别都有数量不等的车,现在需要列表显示名字及他们拥有车的数量, list数据结构如下,当我们使用wx:for进行显示时,发现个 ...

  6. OpenFOAM——设置自定义非均匀场区域

    在使用OpenFOAM进行计算的时候,我们需要对计算域设置非均匀场,比如最典型的溃坝算例,在开始计算以前,我们需要首先设定某一区域的水的体积分数为1,就是下面这样的: 有可能我们在计算传热问题的时候, ...

  7. 如何利用IIS调试ASP.NET网站程序详解

    如何利用IIS调试ASP.NET网站程序详解 更新时间:2019年01月13日 08:44:13   作者:江湖逍遥    我要评论   这篇文章主要给大家介绍了关于如何利用IIS调试ASP.NET网 ...

  8. 第07组 Alpha冲刺(4/6)

    队名:摇光 队长:杨明哲 组长博客:求戳 作业博客:求再戳 队长:杨明哲 过去两天完成了哪些任务 文字/口头描述:摇光测评的相关功能. 展示GitHub当日代码/文档签入记录:(组内共用,已询问过助教 ...

  9. Redis慢日志查询

    Redis slowlog 是个什么 redis的slow log记录了那些执行时间超过规定时长的请求.执行时间不包括I/O操作(比如与客户端进行网络通信等),只是命令的实际执行时间(期间线程会被阻塞 ...

  10. Oracle系列八 高级子查询

    子查询 子查询 (内查询) 在主查询执行之前执行 主查询(外查询)使用子查询的结果 多列子查询 主查询与子查询返回的多个列进行比较 多列子查询中的比较分为两种: 成对比较 问题:查询与141号或174 ...