CF1204E Natasha, Sasha and the Prefix Sums(组合数学)
做法一
\(O(nm)\)
考虑\(f(i,j)\)为i个+1,j个-1的贡献
\(f(i-1,j)\)考虑往序列首添加一个\(1\),则贡献\(1\times\)为序列的个数:\(C(j+i-1,i-1)\)
\(f(i,j-1)\)考虑首添加一个\(-1\),则贡献为\(-1\times\)最大前缀和不为\(0\)的个数,考虑序列个数减掉为\(0\)的个数
设\(k(i,j)\)为\(0\)的个数
\(i=0:k(i,j)=1\)
\(j=0或i>j:k(i,j)=0\)
\(i\le:k(i,j)=k(i-1,j)+k(i,j-1)\),理解:把\(1\)放在最后面,把\(-1\)放在最前面,一定可以构成
做法二
\(O(n+m)\)
考虑\(f(i)\)表示最大子序列为\(i\)的个数,则答案为\(\sum\limits_{i=1}^{n}i\times f(i)\)
考虑\(g(i)\)为最大子序列大于等于\(i\)的个数,显然\(max(n-m,0)\le i\le n\)
抽象到方格:长\(n\)高\(m\)的矩形,往上走相当于\(-1\),往右走相当于\(+1\),最大前缀和至少为\(i\),则路线需要经过\(y=x-i\)
\(0\le i\le n-m:C(n+m,n)\)
\(n-m<i\le n\):考虑\((0,0)\)对\(y=x-i\)对称,则为\((i,-i)\)到\((n,m)\)的方案数,转换为以下问题,为\(C(n+m,m+k)\)
已知未知数个数,系数均为\(1\),和为给定值,未知数非负个数解
Code
#include<bits/stdc++.h>
typedef long long LL;
const LL maxn=1e4+9,mod=998244853;
LL n,m,ans;
LL fac[maxn],fav[maxn],g[maxn];
inline LL Pow(LL base,LL b){
LL ret(1);
while(b){
if(b&1) ret=base*ret%mod;
base=base*base%mod; b>>=1;
}
return ret;
}
inline void Pre(LL N){
fac[0]=1;
for(LL i=1;i<=N;++i) fac[i]=fac[i-1]*i%mod;
// puts("133");
fav[N]=Pow(fac[N],mod-2);
for(LL i=N;i>=1;--i) fav[i-1]=fav[i]*i%mod;
}
inline LL C(LL N,LL M){
return fac[N]*fav[M]%mod*fav[N-M]%mod;
}
inline LL Solve(LL k){
if(k<=n-m) return C(n+m,m);
return C(n+m,m+k);
}
int main(){
scanf("%lld%lld",&n,&m);
Pre(n+m);
// puts("233");
for(LL i=1;i<=n;++i) g[i]=Solve(i); g[n+1]=0;
for(LL i=1;i<=n;++i){
ans=(ans+i*((g[i]-g[i+1]+mod)%mod)%mod)%mod;
}
printf("%lld\n",ans);
return 0;
}
CF1204E Natasha, Sasha and the Prefix Sums(组合数学)的更多相关文章
- CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)
题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...
- [CF1204E]Natasha,Sasha and the Prefix Sums 题解
前言 本文中的排列指由n个1, m个-1构成的序列中的一种. 题目这么长不吐槽了,但是这确实是一道好题. 题解 DP题话不多说,直接状态/变量/转移. 状态 我们定义f表示"最大prefix ...
- CF1204E Natasha, Sasha and the Prefix Sums (卡塔兰数推理)
题面 题解 把题意变换一下,从(0,0)走到(n,m),每次只能网右或往上走,所以假设最大前缀和为f(n),那么走的时候就要到达但不超过 y = x-f(n) 这条线, 我们可以枚举答案,然后乘上方案 ...
- CodeForces 1204E"Natasha, Sasha and the Prefix Sums"(动态规划 or 组合数学--卡特兰数的应用)
传送门 •参考资料 [1]:CF1204E Natasha, Sasha and the Prefix Sums(动态规划+组合数) •题意 由 n 个 1 和 m 个 -1 组成的 $C_{n+m} ...
- E. Natasha, Sasha and the Prefix Sums
http://codeforces.com/contest/1204/problem/E 给定n个 1 m个 -1的全排 求所有排列的$f(a) = max(0,max_{1≤i≤l} \sum_{j ...
- Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学
Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学 [Problem Description] ...
- 【题解】【数组】【Prefix Sums】【Codility】Genomic Range Query
A non-empty zero-indexed string S is given. String S consists of N characters from the set of upper- ...
- 【题解】【数组】【Prefix Sums】【Codility】Passing Cars
A non-empty zero-indexed array A consisting of N integers is given. The consecutive elements of arra ...
- Codeforces 837F Prefix Sums
Prefix Sums 在 n >= 4时候直接暴力. n <= 4的时候二分加矩阵快速幂去check #include<bits/stdc++.h> #define LL l ...
随机推荐
- JDBC第一个案例
1.概述 JDBC(Java DataBase Connectivity) 是 Java 提供的用于执行 SQL 语句一套 API,可以为多种关系型数据库提供统一访问,由一套用 Java 语言编写的类 ...
- 易百教程人工智能python修正-人工智能数据准备-标记数据
我们已经知道,某种格式的数据对于机器学习算法是必需的. 另一个重要的要求是,在将数据作为机器学习算法的输入发送之前,必须正确标记数据. 例如,如果所说的分类,那么数据上会有很多标记. 这些标记以文字, ...
- 微服务与SpringCloud简介
A.官网 https://spring.io/projects/spring-cloud B.简介 Spring Cloud是一个基于Spring Boot实现的云应用开发工具,它为基于JVM的云应用 ...
- input file 无法打开手机端文件选择器
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/m0_37805167/article/details/78538044手机端对input file的 ...
- 方便前端使用的SVG雪碧图
更多代码详情:github.crmeb.net/u/LXT 简介 由于SVG自身的矢量性质,不管在什么情况下,图标都很清晰,可以适应不同尺寸大小和不同分辨率.不用担心模糊和锯齿.同时还能更改图标的填充 ...
- CSS 实现盒子水平居中、垂直居中和水平垂直居中的方法
CSS 实现盒子模型水平居中 水平居中效果图如下: HTML: CSS 全局样式: 方法一:使用margin: 0 auto;(只适用于子盒子有宽的时候) 方法二:text-align + disp ...
- 用js写的简单的下拉菜单
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- Solr-rce历史漏洞复现
最近Solr又出了一个RCE漏洞,复现了一下 # coding: utf-8 import requestsimport argparsefrom urllib import parse if __n ...
- java常用集合框架关系
一.综合总图 1.所有集合类都位于java.util包下. 2.Java的集合类主要由两个接口派生而出:Collection和Map, 3.Collection和Map是Java集合框架的根接口,这两 ...
- jenkens 安装是git版本过低 升级
Jenkins本机默认使用"yum install -y git" 安装的git版本比较低,应该自行安装更高版本的git. 查看jenkins本机的git版本 1 2 [root@ ...