LDA算法 (主题模型算法) 学习笔记
转载请注明出处: http://www.cnblogs.com/gufeiyang
随着互联网的发展,文本分析越来越受到重视。由于文本格式的复杂性,人们往往很难直接利用文本进行分析。因此一些将文本数值化的方法就出现了。LDA就是其中一种很NB的方法。 LDA有着很完美的理论支撑,而且有着维度小等一系列优点。本文对LDA算法进行介绍,欢迎批评指正。
本文目录:
1、Gamma函数
2、Dirichlet分布
3、LDA文本建模
4、吉普斯抽样概率公式推导
5、使用LDA
1、Gamma函数
T(x)= ∫ tx-1 e-tdt T(x+1) = xT(x)
若x为整数,则有 T(n) = (n-1)!
2、Dirichlet分布
这里抛出两个问题:
问题1: (1) X1, X2......Xn 服从Uniform(0,1)
(2) 排序后的顺序统计量为X(1), X(2), X(3)......X(n)
(3) 问X(k1)和X(k1+k2)的联合分布式什么
把整个概率区间分成[0,X1) , [X1, X1+Δ), [X1+Δ, X1+X2), [X1+X2, X1+X2+Δ), [X1+X2+Δ,1]
X(k1) 在区间[X1, X1+Δ), X(k1+k2) 在区间[X1+X2, X1+X2+Δ)。 我们另X3 = 1-X1-X2.
则,
即Dir(x1, x2, x3| k1, k2, n-k1-k2+1)
问题2: (1) X1, X2......Xn 服从Uniform(0,1), 排序后的顺序统计量为X(1), X(2), X(3)......X(n)
(2) 令p1 = [0, X(k1)], p2 = [X(k1), X(k1+k2)], p3 = 1-p1-p2
(3) 另外给出新的信息, Y1, Y2.....Ym服从Uniform(0, 1), Yi落到[0,X(k1)], [X(k1), X(k1+k2)], [X(k1+k2), 1]的数目分别是m1, m2, m3
(4) 问后验概率 p(p1,p2,p3|Y1,Y2,....Ym)的分布。
其实这个问题和问题1很像,只是在同样的范围内多了一些点而已。 因此这个概率分布为 Dir(x1,x2,x3| k1+m1, k2+m2, n-k1-k2+1+m3)。
我们发现这么一个规律 Dir(p|k) + multCount(m) = Dir(p|k+m)。 即狄利克雷分布是多项分布的共轭分布。
狄利克雷分布有这么一个性质:如果则,
3、 LDA文本建模
首先我们想一篇文章是如何形成的:作者在写一篇文章的时候首先会想这个文章需要包含什么主题呢。比如在写武侠小说的时候,首先会想小说里边需要包含武侠、爱情、亲情、搞笑四个主题。并且给这四个主题分配一定的比例(如武侠0.4,爱情0.3,亲情0.2,搞笑0.1)。每个主题会包含一些word,不同word的概率也是不一样的。 因此我们上帝在生成一篇文章的时候流程是这个样子的:
(1)上帝有两个坛子的骰子,第一个坛子装的是doc-topic骰子,第二个坛子装的是topic-wod骰子。
(2)上帝随机的从二个坛子中独立抽取了k个topic-doc骰子,编号1-K。
(3)每次生成一篇新的文档前,上帝先从第一个坛子中随机抽取一个doc-topic骰子,然后重复如下过程生成文档中的词。
<1>、投掷这个doc-topic骰子,得到一个topic的编号z。
<2>、选择K个topic-word骰子中编号为z的的那个,投掷这个骰子, 于是就得到了这个词。
假设语料库中有M篇文章, 所有的word和对应的topic如下表示:
我们可以用下图来解释这个过程:
一共两个物理过程:
第一个过程: ,这个过程分两个阶段。第一个阶段是上帝在生成一篇文档之前,先抽出一个主题分布的骰子,这个分布选择了狄利克雷分布(狄利克雷分布是多项分布的共轭分布)。 第二个阶段根据来抽样得到每个单词的topic。这是一个多项分布。 整个过程是符合狄利克雷分布的。
第二个过程:,这个过程也分两个阶段。第一个阶段是对每个主题,生成word对应的概率,即选取的骰子,这个分布也是选择了狄利克雷分布。 第二个阶段是根据,对于确定的主题选择对应的word,这是一个多项分布。因此,整个过程是狄利克雷分布。
4、吉普斯抽样概率公式推导
LDA的全概率公式为: 。 由于是观测到的已知数据,只有是隐含的变量,所以我们需要关注的分布为:。 我们利用Gibbs Sampling进行抽样。 我们要求的某个位置i(m,n)对应的条件分布为 。
是一个定值,因此原公式成立。
下边是公式的推导:
又由于根据狄利克雷分布的特性:
抽样的时候,首先随机给每个单词一个主题,然后用和进行Gibbs抽样,抽样后更新这两个值,一直迭代到收敛(EM过程)。
至此抽样就结束了。
5、使用LDA
抽样结束后,我们可以统计和来得到和。
对于LDA我们的目标有两个:
(1)得到文章库中每篇文章的主题分布
(2)对于一篇新来的文章,能得到它的主题分布。
第一个目标很容易就能达到。下面主要介绍如果计算 一篇新文章的主题分布。这里我们假设是不会变化的。因此对于一篇新文章到来之后,我们直接用Gibbs Sampling得到新文章的就好了。 具体抽样过程同上。
由于工程上对于计算新的文章没有作用,因此往往只会保存。
参考资料:
《LDA数学八卦》 Rickjin著
python LDA package:
http://pythonhosted.org/lda/index.html
LDA算法 (主题模型算法) 学习笔记的更多相关文章
- LDA(主题模型算法)
LDA整体流程 先定义一些字母的含义: 文档集合D,topic集合T D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词.(LDA里面称之为 ...
- Spark:聚类算法之LDA主题模型算法
http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利 ...
- [综] Latent Dirichlet Allocation(LDA)主题模型算法
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&§ionid=983 二项分布和多项分布 http:// ...
- 机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记
机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间: ...
- Spark机器学习(8):LDA主题模型算法
1. LDA基础知识 LDA(Latent Dirichlet Allocation)是一种主题模型.LDA一个三层贝叶斯概率模型,包含词.主题和文档三层结构. LDA是一个生成模型,可以用来生成一篇 ...
- RSA算法、SSL协议学习笔记
最近学习计算机网络,涉及到SSL协议,我想起了去年密码学课程讲过的非对称加密RSA算法,结合阮老师的博客,写写学习笔记,这里再回忆一下. RSA算法 RSA算法是一种非对称密码算法,所谓非对称,就是指 ...
- LDA概率主题模型
目录 LDA 主题模型 几个重要分布 模型 Unigram model Mixture of unigrams model PLSA模型 LDA 怎么确定LDA的topic个数? 如何用主题模型解决推 ...
- TF-IDF与主题模型 - NLP学习(3-2)
分词(Tokenization) - NLP学习(1) N-grams模型.停顿词(stopwords)和标准化处理 - NLP学习(2) 文本向量化及词袋模型 - NLP学习(3-1) 在上一篇博文 ...
- LDA(Latent Dirichlet Allocation)主题模型算法
原文 LDA整体流程 先定义一些字母的含义: 文档集合D,topic集合T D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词.(LDA里面 ...
随机推荐
- iOS-右滑返回,利用Runtime添加全屏Pop手势
项目中经常会遇到类似需求,需要在某控制器增加全屏右滑返回功能. 在我们不隐藏 NavigationBar 的前提下,系统会自动替我增加此功能,只是它作用的范围仅仅在屏幕左边有限区域. 我们需要在整个界 ...
- fatal: 不是一个有效的对象名:'master'。
听说git比svn的branch功能好,所以装了个msysgit玩.执行完了git init操作后想建branch,用git branch develop命令,结果报错,说 fatal: Not a ...
- MySQL Backup--Xtrabackup备份参数
Xtrabackup备份参数 参数选项: innobackupex [--compress] [--compress-threads=NUMBER-OF-THREADS] [--compress-ch ...
- 微信公众号&小程序 -- 获取并解密用户数据(获取openId、unionId)
本文转自https://my.oschina.net/u/3235888/blog/832895 前言 微信小程序API文档:https://mp.weixin.qq.com/debug/wxadoc ...
- dockerfile命令说明及使用
执行Dockerfile命令: docker build -f /path/to/a/Dockerfil Dockerfile的基本结构 Dockerfile 一般分为四部分:基础镜像信息.维护者信息 ...
- Apache 安装后Error 403的故障排错方法(linux)
Apache 安装后Error 403的故障排错方法 2018年01月07日 14:25:41 个人分类: Linux 一.问题描述 在apache2的httpd配置中,很多情况都会出现403. 刚安 ...
- 探索JVM底层奥秘ClassLoader源码分析
1.JVM基本结构: *.java--------javac编译------>*.class-----ClassLoad加载---->运行时数据区------->执行引擎,接口库-- ...
- WPYOU主题加密码代码的解码
我手上管理一个公司的wordpress网站的主题用的是wpyou的主题,但是在网站有安全隐患的情况下,看到wpyou有把代码进行加密过. 这种加密代码的行为,会被D盾认为是后门,所以一度觉得其文件和代 ...
- AOP与Filter拦截请求打印日志实用例子
相信各位同道在写代码的时候,肯定会写一些日志打印,因为这对往后的运维而言,至关重要的. 那么我们请求一个restfull接口的时候,哪些信息是应该被日志记录的呢? 以下做了一个基本的简单例子,这里只是 ...
- 关于axios请求携带cookie以及封装
axios跨域携带cookie需要配置 axios跨域发送请求的时候默认不会带上cookie的 + withCredentials的情况下,后端要设置Access-Control-Allow-Orig ...