Variance Inflation Factor (VIF) 方差膨胀因子解释_附python脚本
python信用评分卡(附代码,博主录制)
https://etav.github.io/python/vif_factor_python.html
Colinearity is the state where two variables are highly correlated and contain similiar information about the variance within a given dataset. To detect colinearity among variables, simply create a correlation matrix and find variables with large absolute values. In R use the corr
function and in python this can by accomplished by using numpy's corrcoef
function.
Multicolinearity on the other hand is more troublesome to detect because it emerges when three or more variables, which are highly correlated, are included within a model. To make matters worst multicolinearity can emerge even when isolated pairs of variables are not colinear.
A common R function used for testing regression assumptions and specifically multicolinearity is "VIF()" and unlike many statistical concepts, its formula is straightforward:
$$ V.I.F. = 1 / (1 - R^2). $$
The Variance Inflation Factor (VIF) is a measure of colinearity among predictor variables within a multiple regression. It is calculated by taking the the ratio of the variance of all a given model's betas divide by the variane of a single beta if it were fit alone.
Steps for Implementing VIF
- Run a multiple regression.
- Calculate the VIF factors.
- Inspect the factors for each predictor variable, if the VIF is between 5-10, multicolinearity is likely present and you should consider dropping the variable.
#Imports
import pandas as pd
import numpy as np
from patsy import dmatrices
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_factor df = pd.read_csv('loan.csv')
df.dropna()
df = df._get_numeric_data() #drop non-numeric cols df.head()
id | member_id | loan_amnt | funded_amnt | funded_amnt_inv | int_rate | installment | annual_inc | dti | delinq_2yrs | ... | total_bal_il | il_util | open_rv_12m | open_rv_24m | max_bal_bc | all_util | total_rev_hi_lim | inq_fi | total_cu_tl | inq_last_12m | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1077501 | 1296599 | 5000.0 | 5000.0 | 4975.0 | 10.65 | 162.87 | 24000.0 | 27.65 | 0.0 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
1 | 1077430 | 1314167 | 2500.0 | 2500.0 | 2500.0 | 15.27 | 59.83 | 30000.0 | 1.00 | 0.0 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
2 | 1077175 | 1313524 | 2400.0 | 2400.0 | 2400.0 | 15.96 | 84.33 | 12252.0 | 8.72 | 0.0 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
3 | 1076863 | 1277178 | 10000.0 | 10000.0 | 10000.0 | 13.49 | 339.31 | 49200.0 | 20.00 | 0.0 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
4 | 1075358 | 1311748 | 3000.0 | 3000.0 | 3000.0 | 12.69 | 67.79 | 80000.0 | 17.94 | 0.0 | ... | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
5 rows × 51 columns
df = df[['annual_inc','loan_amnt', 'funded_amnt','annual_inc','dti']].dropna() #subset the dataframe
Step 1: Run a multiple regression
%%capture
#gather features
features = "+".join(df.columns - ["annual_inc"]) # get y and X dataframes based on this regression:
y, X = dmatrices('annual_inc ~' + features, df, return_type='dataframe')
Step 2: Calculate VIF Factors
# For each X, calculate VIF and save in dataframe
vif = pd.DataFrame()
vif["VIF Factor"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif["features"] = X.columns
Step 3: Inspect VIF Factors
vif.round(1)
VIF Factor | features | |
---|---|---|
0 | 5.1 | Intercept |
1 | 1.0 | dti |
2 | 678.4 | funded_amnt |
3 | 678.4 | loan_amnt |
As expected, the total funded amount for the loan and the amount of the loan have a high variance inflation factor because they "explain" the same variance within this dataset. We would need to discard one of these variables before moving on to model building or risk building a model with high multicolinearity.
https://study.163.com/course/courseMain.htm?courseId=1005988013&share=2&shareId=400000000398149
Variance Inflation Factor (VIF) 方差膨胀因子解释_附python脚本的更多相关文章
- 可决系数R^2和方差膨胀因子VIF
然而很多时候,被筛选的特征在模型上线的预测效果并不理想,究其原因可能是由于特征筛选的偏差. 但还有一个显著的因素,就是选取特征之间之间可能存在高度的多重共线性,导致模型对测试集预测能力不佳. 为了在筛 ...
- GWAS: 曼哈顿图,QQ plot 图,膨胀系数( manhattan、Genomic Inflation Factor)
画曼哈顿图和QQ plot 首推R包“qqman”,简约方便.下面具体介绍以下. 一.画曼哈顿图 install.packages("qqman") library(qqman) ...
- Java 序列化Serializable具体解释(附具体样例)
Java 序列化Serializable具体解释(附具体样例) 1.什么是序列化和反序列化 Serialization(序列化)是一种将对象以一连串的字节描写叙述的过程:反序列化deserializa ...
- Cocos2d-x手机游戏开发与项目实践具体解释_随书代码
Cocos2d-x手机游戏开发与项目实战具体解释_随书代码 作者:沈大海 因为原作者共享的资源为UTF-8字符编码.下载后解压在win下显示乱码或还出现文件不全问题,现完整整理,解决全部乱码问题,供 ...
- 杭电 2136 Largest prime factor(最大素数因子的位置)
Largest prime factor Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- 斯坦福大学公开课机器学习: advice for applying machine learning | regularization and bais/variance(机器学习中方差和偏差如何相互影响、以及和算法的正则化之间的相互关系)
算法正则化可以有效地防止过拟合, 但正则化跟算法的偏差和方差又有什么关系呢?下面主要讨论一下方差和偏差两者之间是如何相互影响的.以及和算法的正则化之间的相互关系 假如我们要对高阶的多项式进行拟合,为了 ...
- glibc中malloc的详细解释_转
glibc中的malloc实现: The main properties of the algorithms are:* For large (>= 512 bytes) requests, i ...
- cmd /c和cmd /k 解释,附★CMD命令★ 大全
cmd /c和cmd /k http://leaning.javaeye.com/blog/380810 java的Runtime.getRuntime().exec(commandStr)可以调用执 ...
- c语言_文件操作_FILE结构体解释_涉及对操作系统文件FCB操作的解释_
1. 文件和流的关系 C将每个文件简单地作为顺序字节流(如下图).每个文件用文件结束符结束,或者在特定字节数的地方结束,这个特定的字节数可以存储在系统维护的管理数据结构中.当打开文件时,就建立了和文件 ...
随机推荐
- Kali下进行局域网断网攻击
今天我就来演示一下在kali下的局域网断网攻击,即ARP地址欺骗,下图所要用到的arp地址欺骗状态图: 则: 第一步:假设主机A访问某网站,那么要告知某网站我的IP和MAC地址,但这是以广播的方式告知 ...
- HDU-2204-Eddy's爱好-容斥求n以内有多少个数形如M^K
HDU-2204-Eddy's爱好-容斥求n以内有多少个数形如M^K [Problem Description] 略 [Solution] 对于一个指数\(k\),找到一个最大的\(m\)使得\(m^ ...
- 03 c++中this指针
概念: 成员函数:在类中定义的函数.普通函数无法被继承,成员函数可以被继承.友元函数相当于普通函数. 友元函数不是类的组成,没有this指针,必须将成员函数操作符作为参数传递对象. 在c++中成员函数 ...
- python_并发编程——多进程
from multiprocessing import Process import os def func1(): print('子进程1',os.getpid()) #子进程:获取当前进程的进程号 ...
- *.net框架 - IEnumerable类 & IQueryable类
什么使用IQueryable<T> 查询返回类型为什么用IQueryable<T>,而不用 IEnumerable<T>类型? IQueryable接口实现IEnu ...
- JQuery系列(1) - 选择器、构造函数、实例方法
概述 JQuery是一个JavaScript库,jQuery的核心思想是“先选中某些网页元素,然后对其进行某种处理”(find something, do something),也就是说,先选择后处理 ...
- MyEclipse激活代码
package TestCase; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStr ...
- 本地仓库推送到远程仓库:fatal: refusing to merge unrelated histories
最近,在操作git的时候,遇到各种问题,下面总结一下. 最开始,我不是先把远程仓库拉取到本地 ,而是直接在本地先创建一个仓库,再git remote add添加远程仓库. 当然,gitee官方还是有操 ...
- jpg/jpeg/png格式的区别与应用场景
注:在存储图像时采用JPG还是PNG主要依据图像上的色彩层次和颜色数量进行选择 一..jpg/jpeg格式的图片(jpg全名:jpeg) JPG(或是JPEG): 优点: (1)占用内存小,网页加载速 ...
- Python如何实现doc文件转换为docx文件?
Python如何实现doc文件转换为docx文件? 在开发过程中遇到一个关于读写doc和docx的问题: 一个文件夹中有两种文件, 一种为doc结尾, 一种为docx结尾, 需要将这些文件全部重命名. ...