T1 锻造 forging

题目描述

“欢迎啊,老朋友。”

一阵寒暄过后,厂长带他们参观了厂子四周,并给他们讲锻造的流程。

“我们这里的武器分成若干的等级,等级越高武器就越厉害,并且对每一等级的武器都有两种属性值 b 和 c,但是我们初始只能花\(a\)个金币来生产\(1\)把\(0\)级剑......”

“所以你们厂子怎么这么垃圾啊,不能一下子就造出来\(999\)级的武器吗?”勇者不耐烦的打断了厂长的话。

“别着急,还没开始讲锻造呢......那我们举例你手中有一把\(x\)级武器和一把\(y\)级武器\((y = max(x − 1, 0))\),我们令锻造附加值\(k = min(c_x , b_y )\),则你有 \(\frac{k}{c_x}\) 的概率将两把武器融合成一把\(x + 1\)级的武器。”

“......但是,锻造不是一帆风顺的,你同样有 \(1−\frac{k}{c_x}\) 的概率将两把武器融合成一把\(max(x − 1, 0)\) 级的武器......”

勇者听完后暗暗思忖,他知道厂长一定又想借此机会坑骗他的零花钱,于是求助这个村最聪明的智者——你,来告诉他,想要强化出一把\(n\)级的武器,其期望花费为多少?

由于勇者不精通高精度小数,所以你只需要将答案对\(998244353\)取模即可。

分析

期望DP+线性逆元。

设\(f[i]\)表示打造成等级为\(i\)的武器的期望花费,那么考虑转移:

\[f[i]=f[i-1]+f[i-2]+P\times (f[i] - f[i - 2])
\]

其中,\(P=(1-\frac{k}{c_{i-1}})\),为打造失败的概率。

这个方程表示,若打造成功,那么花费即为\(f[i-1]+f[i-2]\),若未成功,那么我们就有了一件等级为\(i-2\)的武器,所以格外的花费就应该是\(f[i]-f[i-2]\),然后整理可得:

\[f[i]=\frac{c_{i-1}}{k} \times f[i-1]+f[i-2]
\]

然后再加个线性求逆元就行了。

时间复杂度\(O(n)\)。

#include<cstdio>
#include<cstdlib>
#define ll long long
#define Re register
const int N = 1e7 + 5;
const int P = 998244353;
inline int read() {
int f = 1, x = 0; char ch;
do { ch = getchar(); if (ch == '-') f = -1; } while (ch < '0' || ch > '9');
do {x = (x << 3) + (x << 1) + ch - '0'; ch = getchar(); } while (ch >= '0' && ch <= '9');
return f * x;
}
inline int min(int a, int b) { return a < b ? a : b; }
inline void hand_in() {
freopen("forging.in", "r", stdin);
freopen("forging.out", "w", stdout);
}
int n, a, bx, by, cx, cy, p, b[N], c[N], inv[N], f[N];
int main() {
hand_in();
inv[0] = inv[1] = 1;
for (Re int i = 2;i <= 10000000; ++i) {
inv[i] = (ll)(P - (P / i)) * (ll)inv[P % i] % P;
}
n = read(), a = read(), bx = read(), by = read(), cx = read(), cy = read(), p = read();
b[0] = by + 1, c[0] = cy + 1;
for (Re int i = 1;i < n; ++i) {
b[i] = ((ll)b[i - 1] * bx + by) % p + 1;
c[i] = ((ll)c[i - 1] * cx + cy) % p + 1;
}
f[0] = a, f[1] = ((ll)(((ll)c[0] * inv[min(c[0], b[0])]) % P + 1) * f[0]) % P;
for (int i = 2;i <= n; ++i) {
f[i] =((((ll)c[i - 1] * inv[min(c[i - 1], b[i - 2])]) % P * f[i - 1]) % P + f[i - 2]) % P;
}
printf("%d\n", f[n]);
return 0;
}

T2 整除 division

题目大意

求解\(x^m\equiv x (mod p_1\times p_2\times \dots \times p_c)\)在\([1, p_1\times p_2\times \dots \times p_c]\)区间取值间的个数。

分析

懒得写了,这里很清楚

#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define Re register
const int N = 1e5 + 5;
const int P = 998244353;
inline int read() {
int f = 1, x = 0; char ch;
do { ch = getchar(); if (ch == '-') f = -1; } while (ch < '0' || ch > '9');
do {x = (x << 3) + (x << 1) + ch - '0'; ch = getchar(); } while (ch >= '0' && ch <= '9');
return f * x;
} inline int min(int a, int b) { return a < b ? a : b; } inline int max(int a, int b) { return a < b ? b : a; } inline void swap(int &a, int &b) { a ^= b ^= a ^= b; } inline void hand_in() {
freopen("division.in", "r", stdin);
freopen("division.out", "w", stdout);
} inline ll mi(ll a, ll b, ll p) {
ll ret = 1;
while (b) {
if (b & 1) ret *= a, ret %= p;
a *= a, a %= p;
b >>= 1;
}
return ret;
} int prim[N], vis[N], tot;
inline void Prim() {
vis[1] = 1;
for (int i = 2;i <= 10000; ++i) {
if (!vis[i]) prim[++tot] = i;
for (int j = 1;j <= tot; ++j) {
if (prim[j] * i > 10000) break;
vis[prim[j] * i] = 1;
if (!(i % prim[j])) break;
}
}
} int pw[N]; inline int calc(int m, int p) {
pw[1] = 1, pw[p] = 0;
for (int i = 2;i < p; ++i) {
if (!vis[i]) pw[i] = mi(i, m, p);
for (int j = 1;prim[j] <= i; ++j) {
if (prim[j] * i > p) break;
pw[prim[j] * i] = pw[prim[j]] * pw[i];
if (!(i % prim[j])) break;
}
}
int ret = 1;
for (int i = 1;i < p; ++i) ret += (pw[i] == i);
return ret;
} inline ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a % b);
} int id, T, c, m, ans; int main() {
hand_in();
id = read();
T = read();
Prim();
while (T --) {
c = read(), m = read();
ans = 1;
for (int i = 1, p;i <= c; ++i) {
p = read();
// ans = ((ll)ans * calc(m, p)) % P;
ans = ((ll)ans * (gcd(m - 1, p - 1) + 1)) % P;
}
printf("%d\n", ans);
}
return 0;
}

T3 欠钱 money

分析

将有向有根树改成无向无根树存下来,树上倍增+启发式合并,每次合并时暴力重构倍增数组,倍增数组多存一个到\(2^i\)的父节点的方向,全向上为\(1\),全向下为\(2\),两个都有为\(3\),询问时判断两个点的方向关系就可以了。

时间复杂度\(O(nlog^2n + mlogn)\)。

#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define Re register
const int N = 1e5 + 5;
const int INF = 0x7fffffff;
const int BASE = 16;
inline int read() {
int f = 1, x = 0; char ch;
do { ch = getchar(); if (ch == '-') f = -1; } while (ch < '0' || ch > '9');
do {x = (x << 3) + (x << 1) + ch - '0'; ch = getchar(); } while (ch >= '0' && ch <= '9');
return f * x;
} inline void write(int x) {
if (x < 0) putchar('-'), x = -x;
if (x > 9) write(x / 10);
putchar(x % 10 + '0');
} inline int min(int a, int b) { return a < b ? a : b; } inline void swap(int &a, int &b) { a ^= b ^= a ^= b; } inline void hand_in() {
freopen("money.in", "r", stdin);
freopen("money.out", "w", stdout);
} int n, m, last; struct Graph {
int to[N << 1], nxt[N << 1], w[N << 1], dir[N << 1], head[N], cnt;
inline void add(int x, int y, int z, int d) {
++cnt;
to[cnt] = y, w[cnt] = z, dir[cnt] = d, nxt[cnt] = head[x], head[x] = cnt;
}
}G; int f[N], sz[N];
int anc[N][BASE + 1], mn[N][BASE + 1], dir[N][BASE + 1], dep[N], up[N];
inline void init() {for (Re int i = 1;i <= n; ++i) f[i] = i, sz[i] = 1, up[i] = 1; } inline void dfs(int u, int fa, int rt) {
f[u] = rt, dep[u] = dep[fa] + 1;
for (Re int i = 1;i <= BASE; ++i) {
anc[u][i] = anc[anc[u][i - 1]][i - 1];
mn[u][i] = min(mn[u][i - 1], mn[anc[u][i - 1]][i - 1]);
dir[u][i] = (dir[u][i - 1] | dir[anc[u][i - 1]][i - 1]);
}
for (Re int i = G.head[u], v;i;i = G.nxt[i]) {
v = G.to[i];
if (v == fa) continue;
anc[v][0] = u;
mn[v][0] = G.w[i];
dir[v][0] = 3 ^ G.dir[i];
dfs(v, u, rt);
}
} inline void merge(int u, int v, int w) {
G.add(u, v, w, 1), G.add(v, u, w, 2);
int dirs = sz[f[u]] < sz[f[v]] ? 1 : 2;
if (dirs == 2) swap(u, v);
anc[u][0] = v, mn[u][0] = w, dir[u][0] = dirs;
sz[f[v]] += sz[f[u]];
dfs(u, v, f[v]);
} inline int ask(int u, int v) {
if (f[u] != f[v]) return 0;
int dirs = 0, res = INF;
if (dep[u] < dep[v]) swap(u, v), dirs = 3;
for (int i = BASE; i >= 0; --i) {
if (dep[u] - (1 << i) >= dep[v]) {
if (dir[u][i] != (1 ^ dirs)) return 0;
res = min(res, mn[u][i]);
u = anc[u][i];
}
}
if (u == v) return res;
for (int i = BASE;i >= 0; --i) {
if (anc[u][i] != anc[v][i]) {
if (dir[u][i] != (1 ^ dirs) || dir[v][i] != (2 ^ dirs)) return 0;
res = min(res, min(mn[u][i], mn[v][i]));
u = anc[u][i], v = anc[v][i];
}
}
if (dir[u][0] != (1 ^ dirs) || dir[v][0] != (2 ^ dirs)) return 0;
res = min(res, min(mn[u][0], mn[v][0]));
return res;
} int main() {
hand_in();
n = read(), m = read(), init();
for (Re int i = 1, op, a, b, c;i <= m; ++i) {
op = read(), a = read(), b = read();
a = (a + last) % n + 1;
b = (b + last) % n + 1;
if (!op) {
c = read();
c = (c + last) % n + 1;
merge(a, b, c);
}
else {
write(last = ask(a, b));
puts("");
}
}
return 0;
}

九校联考-DL24凉心模拟Day2总结的更多相关文章

  1. 中山纪中集训Day4双是测试(划沝) 九校联考-DL24凉心模拟Day2

    A组T1 锻造 (forging) 1.1 题目背景 勇者虽然武力值很高,但在经历了多次战斗后,发现怪物越来越难打于是开始思考是不是自己平时锻炼没到位,于是苦练一个月后发现......自己连一个史莱姆 ...

  2. 【九校联考-24凉心模拟】锻造(forging)

    题目背景 勇者虽然武力值很高,但在经历了多次战斗后,发现怪物越来越难打, 于是开始思考是不是自己平时锻炼没到位,于是苦练一个月后发现……自 己连一个史莱姆都打不过了. 勇者的精灵路由器告诉勇者其实是他 ...

  3. 九校联考_24OI——餐馆restaurant

    凉心模拟D1T1--最简单的一道题 TAT 餐馆(restaurant) 题目背景 铜企鹅是企鹅餐馆的老板,他正在计划如何使得自己本年度收益增加. 题目描述 共有n 种食材,一份食材i 需要花ti 小 ...

  4. 九校联考 终&启

    one term's ending... class:12 school:130...130...130... 至今没有看到九校的排名,如果九校排名正常的话,那yyhs的学生也太可怕了...估计要三百 ...

  5. 九校联考(DL24凉心模拟) 整除(中国剩余定理+原根性质)

    题意简述 给定 \(n, m\),求 \(n|x^m - x\) 在满足 \(x \in [1, n]\) 时合法的 \(x\) 的数量.答案模 \(998244353\).单个测试点包含多组数据. ...

  6. 洛谷 P4363 [九省联考2018]一双木棋chess 解题报告

    P4363 [九省联考2018]一双木棋chess 题目描述 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落 ...

  7. 三校联考 Day3

    三校联考 Day3 大水题 题目描述:给出一个圆及圆上的若干个点,问两个点间的最远距离. solution 按极角排序,按顺序枚举,显然距离最远的点是单调的,线性时间可解出答案. 大包子的束缚 题目描 ...

  8. [九省联考2018]秘密袭击coat

    [九省联考2018]秘密袭击coat 研究半天题解啊... 全网几乎唯一的官方做法的题解:链接 别的都是暴力.... 要是n=3333暴力就完了. 一.问题转化 每个联通块第k大的数,直观统计的话,会 ...

  9. 【BZOJ5250】[九省联考2018]秘密袭击(动态规划)

    [BZOJ5250][九省联考2018]秘密袭击(动态规划) 题面 BZOJ 洛谷 给定一棵树,求其所有联通块的权值第\(k\)大的和. 题解 整个\(O(nk(n-k))\)的暴力剪剪枝就给过了.. ...

随机推荐

  1. web前端开发高级

    前端高效开发框架技术与应用 Vue 基础Vue 框架简介 MVX 模式介绍Vue 框架概述如何使用 Vue.js 基础语法 实例对象生命周期模板语法计算属性Methods 方法 渲染 列表渲染条件渲染 ...

  2. 模拟30A 题解

    A. 树 联想起远古考试时做的题 记忆的轮廓. 树上走一些步数的期望. 显然可以直接解方程. 然而复杂度$O(qn^3)$,利用树上的性质优化一下, 直接一遍dfs过程中解出来,可以$O(qnlogm ...

  3. Jedis与Jedis连接池

    1.Jedis简介 实际开发中,我们需要用Redis的连接工具连接Redis然后操作Redis, 对于主流语言,Redis都提供了对应的客户端: https://redis.io/clients 2. ...

  4. 【Python】[技术博客] 如何对使用PYQT编写的GUI文件进行单元测试

    如何对使用PYQT编写的GUI文件进行单元测试 想要对PYQT编写的GUI文件进行单元测试,我们主要用到QTest QTest里面包含了一些对窗体的各种控件进行模拟操作的函数,通过QTest对窗体进行 ...

  5. JMeter的接口测试使用

    1 先创建线程组

  6. apache Request-URI Too Large 处理办法

    在Apache的httpd.conf配置文件中(直接加就可以) LimitRequestLine 40940 LimitRequestFieldSize 40940

  7. JDBC连接抽象方法的使用例子

    package com.zdlt.auth.api.base.datasource; import java.sql.*; import java.util.ArrayList; import jav ...

  8. Java 8之Map新增方法<转>

    在Java 8中的Map.Entry接口中增加了comparingByKey, comparingByValue方法,它们都返回Comparator<Map.Entry<K,V>&g ...

  9. 禁用 Ubuntu 18.04 Files 的 Type Ahead search 功能

    . . . . . Ubuntu 的文件浏览器(Files)提供了一个搜索的功能,叫做“Type Ahead search”.即我们在文件浏览器中输入某个文件的名字时,Files 并不是将焦点定位在某 ...

  10. Ubuntu16.04安装CDH

    官方参考文档: https://www.cloudera.com/documentation/enterprise/5-15-x/topics/configure_cm_repo.html 安装cdh ...