AT2000 Leftmost Ball
设\(f[i][j]\)表示当前有\(i\)个白球,一共放完了\(j\)种球
显然有\(j <= i\)
对于每个状态目前已经放下去的球是固定了的,那么考虑转移
- 放白球 从\(f[i - 1][j]\)转移
- 放没有出现过的球 \((n - j + 1) * f[i][j - 1] * C(k - 2, n * k - i - (j - 1) * (k - 1) - 1)\)
第二种的C是钦定第一个球放在已经构造好了的合法序列的后面第一个空位,然后剩下的\(k-2\)个球放在剩下的\(n * k - i - (j - 1) * (k - 1) - 1\)空位上。
#include <bits/stdc++.h>
using namespace std;
const int N = 2020;
const int mod = 1e9 + 7;
int inv[N * N], fac[N * N];
int f[N][N];
int n, k;
int power(int a, int b) {
a %= mod; int ans = 1;
while(b) {
if(b & 1) ans = 1ll * ans * a % mod;
a = 1ll * a * a % mod; b >>= 1;
}
return ans;
}
int C(int n, int m) {
return 1ll * fac[m] * inv[n] % mod * inv[m - n] % mod;
}
int main() {
scanf("%d%d", &n, &k);
if(k == 1) return printf("%d\n", 1), 0;
fac[0] = 1;
for(int i = 1; i < N * N; ++i)
fac[i] = 1ll * fac[i - 1] * i % mod;
for(int i = 0; i < N * N; ++i)
inv[i] = power(fac[i], mod - 2);
for(int i = 0; i <= n; ++i) f[i][0] = 1;
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= i; ++j) {
f[i][j] = f[i - 1][j];
(f[i][j] += 1ll * (n - j + 1) * f[i][j - 1] % mod * C(k - 2, n * k - i - (j - 1) * (k - 1) - 1) % mod) %= mod;
(f[i][j] += mod) %= mod;
}
}
printf("%lld\n", (f[n][n] % mod + mod) % mod);
return 0;
}
AT2000 Leftmost Ball的更多相关文章
- AT2000 Leftmost Ball(计数dp+组合数学)
传送门 解题思路 设\(f[i][j]\)表示填了\(i\)个白色,\(j\)种彩色的方案数,那么显然\(j<=i\).考虑这个的转移,首先可以填一个白色,就是\(f[i][j]=f[i-1][ ...
- AT2000 Leftmost Ball 解题报告
题面 给你n种颜色的球,每个球有k个,把这n*k个球排成一排,把每一种颜色的最左边出现的球涂成白色(初始球不包含白色),求有多少种不同的颜色序列,答案对1e9+7取模 解法 设\(f(i,\;j)\) ...
- 【AGC 002F】Leftmost Ball
Description Snuke loves colorful balls. He has a total of N*K balls, K in each of his favorite N col ...
- 【agc002f】Leftmost Ball(动态规划)
[agc002f]Leftmost Ball(动态规划) 题面 atcoder 洛谷 题解 我们从前往后依次把每个颜色按顺序来放,那么如果当前放的是某种颜色的第一个球,那么放的就会变成\(0\)号颜色 ...
- 【AtCoder】AGC022 F - Leftmost Ball 计数DP
[题目]F - Leftmost Ball [题意]给定n种颜色的球各k个,每次以任意顺序排列所有球并将每种颜色最左端的球染成颜色0,求有多少种不同的颜色排列.n,k<=2000. [算法]计数 ...
- ATcoder 2000 Leftmost Ball
Problem Statement Snuke loves colorful balls. He has a total of N×K balls, K in each of his favorite ...
- [AT2000] [agc002_f] Leftmost Ball
题目链接 AtCoder:https://agc002.contest.atcoder.jp/tasks/agc002_f 洛谷:https://www.luogu.org/problemnew/sh ...
- AGC002 F - Leftmost Ball
貌似哪里讲过这题..总之当时掉线了(理解能力又差水平又低选手的日常).. 看看题目,应该是DP. 尝试了几次换状态,毫无思路.那我们就来继续挖掘性质吧...为了更直观,我们令第i个出现的球颜色就是i( ...
- 【AGC002F】Leftmost Ball DP 数学
题目大意 有\(n\)种颜色的球,每种\(m\)个.现在zjt把这\(nm\)个球排成一排,然后把每种颜色的最左边的球染成第\(n+1\)种颜色.求最终的颜色序列有多少种,对\(1000000007\ ...
随机推荐
- 【Docker学习之五】Docker自定义镜像示例
环境 docker-ce-19.03.1-3.el7.x86_64 centos 7 一.创建centos+jdk+tomcat镜像 对于公用的容器比如,tomcat.nginx.mysql等应用组件 ...
- ThreadLocal源代码2
private static int nextIndex(int i, int len) { return ((i + 1 < len) ? i + 1 : 0); } private stat ...
- perl oneline
可参考博客:http://blog.csdn.net/carzyer/article/details/5117429 Perl常用命令行参数概览 -e 指定字符串以作为脚本(多个字符串迭加)执行 -M ...
- fineui 模拟右下角弹窗
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat=&qu ...
- string字符串成员函数
string字符串成员函数 string str1="aaa"; char c='c'; str1.assign("ABCAAAAAAABBBBB");//替换 ...
- Delphi Mercadopago支付【支持支持获取账户信息和余额、创建商店,商店查询、创建二维码、二维码查询、创建订单、订单查询、订单退款等功能】
作者QQ:(648437169) 点击下载➨Delphi Mercadopago支付 [Delphi Mercadopago支付]支持 支持支持获取账户信息和余额.创建商店,商店查询.创建二维码.二维 ...
- day14——装饰器
day14 装饰器 装饰器本质就是闭包 开放封闭原则: 扩展是开放的(增加新功能),对源码是封闭的(修改已经实现的功能) 装饰器:用来装饰的工具 作用:在不改变源代码及调用方式的基础下额外增加新的功能 ...
- coco2dx--Permission denied
在终端输入./cocos.py....创建项目时,出现Permission denied,是权限问题,可以先使用chmod命令获得权限,输入chmod u+x ./cocos.py 回车,接着再使用c ...
- CF1063F String Journey DP、SAM、线段树
传送门 为了方便把串反过来,条件变为\(t_i\)是\(t_{i+1}\)的真子串,答案显然不变. 一件重要的事情是必定存在一种最优解,字符串序列\(\{t\}\)满足\(|t_i| = i\). 考 ...
- :阿里巴巴 Java 开发手册 (十一)工程结构
(一) 应用分层 1. [推荐]图中默认上层依赖于下层,箭头关系表示可直接依赖,如:开放接口层可以依赖于 Web 层,也可以直接依赖于 Service 层,依此类推: 开放接口层:可直接封装 Se ...