Philosopher(set 线段树合并)
- 直接维护乘积是肯定不可行的, 精度会爆炸, 于是我们来维护对数的和, 最后来计算最高位即可
- 那么转换成区间求和, 区间排序
- 区间排序的方式可以采用线段树维护最大递增块来解决,外层用set来维护线段树的区间, 然后利用线段树的合并分裂性质来操作即可
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<iostream>
#include<set>
#include<cmath>
#define ll long long
#define M (1 << 18)
#define N 20000010
#define double long double
const double eps = 1e-8;
using namespace std;
int read() {
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
double c[M], ver[M];
int num[M], n, m;
int lowbit(int x) {
return x & -x;
}
void add(int x, double v) {
for(int i = x; i <= n; i += lowbit(i)) c[i] += v;
}
double query(int x) {
double ans = 0;
for(int i = x; i; i -= lowbit(i)) ans += c[i];
return ans;
}
struct Note {
int l, r, rt, op;
Note(int ln = 0, int rn = 0, int rtn = 0, int opn = 0) {
l = ln, r = rn, rt = rtn, op = opn;
}
bool operator < (const Note &b) const {
return this->l < b.l;
}
};
#define S set<Note>::iterator
set<Note> st;
int ls[N], rs[N], cnt[N], f;
double sum[N];
void pushup(int now) {
cnt[now] = cnt[ls[now]] + cnt[rs[now]];
sum[now] = sum[ls[now]] + sum[rs[now]];
}
int merge(int x, int y) {
if(!x || !y) return x + y;
ls[x] = merge(ls[x], ls[y]);
rs[x] = merge(rs[x], rs[y]);
cnt[x] = cnt[x] + cnt[y];
sum[x] = sum[x] + sum[y];
return x;
}
S insert(Note x) {
add(x.l, sum[x.rt]);
return st.insert(x).first;
}
void Del(S it) {
add(it->l, -sum[it->rt]);
st.erase(it);
}
void split(int x, int &rt1, int &rt2, int l, int r, int k) {
rt1 = ++f;
rt2 = ++f;
if(l == r) {
cnt[rt1] = k;
sum[rt1] = ver[l] * k;
cnt[rt2] = cnt[x] - cnt[rt1];
sum[rt2] = sum[x] - sum[rt1];
return;
}
int mid = (l + r) >> 1;
if(cnt[ls[x]] >= k) {
rs[rt2] = rs[x];
split(ls[x], ls[rt1], ls[rt2], l, mid, k);
} else {
ls[rt1] = ls[x];
split(rs[x], rs[rt1], rs[rt2], mid + 1, r, k - cnt[ls[x]]);
}
pushup(rt1);
pushup(rt2);
}
S split(int x) {
if(x > n) return st.end();
S it = st.upper_bound(Note(x, 0, 0, 0));
it--;
Note hh = *it;
if(hh.l == x) return it;
int rt1, rt2;
if(!hh.op) split(hh.rt, rt1, rt2, 1, n, x - hh.l);
else split(hh.rt, rt2, rt1, 1, n, hh.r - x + 1);
Del(it);
insert(Note(hh.l, x - 1, rt1, hh.op));
return insert(Note(x, hh.r, rt2, hh.op));
}
void build(int &x, int l, int r, int k) {
x = ++f;
cnt[x]++;
sum[x] += ver[k];
if(l == r) return;
int mid = (l + r) >> 1;
if(k <= mid) build(ls[x], l, mid, k);
else build(rs[x], mid + 1, r, k);
}
int calc(int l, int r) {
S L = split(l), R = split(r + 1);
R--;
double ans = query(R->r) - query(L->l - 1);
double out = pow(10, ans - floorl(ans) + eps);
return floorl(out);
}
void updata(int l, int r, int op) {
S L = split(l);
split(r + 1);
int rt = 0;
for(S it = L; it != st.end() && (it->l) <= r; Del(it++)) {
rt = merge(rt, it->rt);
}
insert(Note(l, r, rt, op));
}
int main() {
n = read(), m = read();
for(int i = 1; i <= n; i++) num[i] = read(), ver[i] = log10(i);
for(int i = 1; i <= n; i++) {
int now;
build(now, 1, n, num[i]);
insert(Note(i, i, now, 0));
}
while(m--) {
int op = read(), l = read(), r = read();
if(op == 2) cout << calc(l, r) << "\n";
else {
op = read() ^ 1;
updata(l, r, op);
}
}
return 0;
}
Philosopher(set 线段树合并)的更多相关文章
- 【xsy2194】Philosopher set+线段树合并
题目大意:给你一个长度为$n$的序列,有$m$次操作,每次操作是以下两种之一: 对某个区间内的数按照升序/降序排序,询问某个区间内数的积在十进制下首位数字是多少. 数据范围:$n,m≤2\times ...
- [XJOI NOI2015模拟题13] C 白黑树 【线段树合并】
题目链接:XJOI - NOI2015-13 - C 题目分析 使用神奇的线段树合并在 O(nlogn) 的时间复杂度内解决这道题目. 对树上的每个点都建立一棵线段树,key是时间(即第几次操作),动 ...
- [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】
题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...
- BZOJ 3307: 雨天的尾巴( LCA + 线段树合并 )
路径(x, y) +z : u处+z, v处+z, lca(u,v)处-z, fa(lca)处-z, 然后dfs一遍, 用线段树合并. O(M log M + M log N). 复杂度看起来不高, ...
- BZOJ2733 [HNOI2012]永无乡 【线段树合并】
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- bzoj 2243 [SDOI2011]染色(树链剖分+线段树合并)
[bzoj2243][SDOI2011]染色 2017年10月20日 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询 ...
- bzoj3702二叉树 线段树合并
3702: 二叉树 Time Limit: 15 Sec Memory Limit: 256 MBSubmit: 600 Solved: 272[Submit][Status][Discuss] ...
- BZOJ_2212_[Poi2011]Tree Rotations_线段树合并
BZOJ_2212_[Poi2011]Tree Rotations_线段树合并 Description Byteasar the gardener is growing a rare tree cal ...
- B20J_2733_[HNOI2012]永无乡_权值线段树合并
B20J_2733_[HNOI2012]永无乡_权值线段树合并 Description:n座岛,编号从1到n,每座岛都有自己的独一无二的重要度,按照重要度可以将这n座岛排名,名次用1到 n来表示.某些 ...
- BZOJ_3307_雨天的尾巴_线段树合并+树上差分
BZOJ_3307_雨天的尾巴_线段树合并 Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y 对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成 所有发放后 ...
随机推荐
- 安装更新时出现一些问题,但我们稍后会重试。如果你继续看到此错误,并且想要搜索 Web 或联系支持人员以获取相关信息,以下信息可能会对你有帮助: (0x80070426)
安装更新时出现一些问题,但我们稍后会重试.如果你继续看到此错误,并且想要搜索 Web 或联系支持人员以获取相关信息,以下信息可能会对你有帮助: (0x80070426) https://answers ...
- ICP 匹配定位算法学习记录
icp 算法原理是: 选取目标点云P和源点云Q,按照一定的约束条件,找到最邻近点(pi,qi),然后计算出最优R和t(旋转和平移), 使得误差函数最小,误差函数E(R,t): 基本算法流程: 1.在目 ...
- linux 用du查看硬盘信息
linux 用du查看硬盘信息 <pre>[root@iZ238qupob7Z web]# df -hFilesystem Size Used Avail Use% Mounted on/ ...
- Exercises for IN1900
Exercises for IN1900October 14, 2019PrefaceThis document contains a number of programming exercises ...
- spring boot测试类自动注入service或dao
使用Spring Boot进行单元测试时,发现使用@Autowired注解的类无法自动注入,当使用这个类的实例的时候,报出NullPointerException,即空指针异常. Spring Boo ...
- Navicat Premium 12.0.22 安装与破解
一.安装 Navicat Premium 12.0.22的下载链接:https://pan.baidu.com/s/1swRY_fwIZfufdxDZj3hDyw 密码:09k8 安装步骤就是一路向下 ...
- 缘起 Dubbo ,讲讲 Spring XML Schema 扩展机制
背景 在 Dubbo 中,可以使用 XML 配置相关信息,也可以用来引入服务或者导出服务.配置完成,启动工程,Spring 会读取配置文件,生成注入 相关 Bean.那 Dubbo 如何实现自定义 X ...
- C# - VS2019调用AForge库实现调用摄像头拍照功能
前言 作为一名资深Delphi7程序员,想要实现摄像头扫描一维码/二维码功能,发现所有免费的第三方库都没有简便的实现办法,通用的OpenCV或者ZXing库基本上只支持XE以上的版本,而且一维码的识别 ...
- 前端开发CSS3——文本样式和盒子及样式
博主废话少说,直接介绍css常用的属性和属性值:属性和值只需过一遍,页面的结构还是需要布局,布局的只是后期会更新的. 提供一些图标的网站:font-awesome: http://fontaw ...
- 8 Best DDoS Attack Tools (Free DDoS Tool Of The Year 2019)
#1) HULK Description: HULK stands for HTTP Unbearable Load King. It is a DoS attack tool for the web ...