问题描述

LG5367


题解

康托展开公式:

\[ans=1+(\sum_{i=1}^{n}{a_i})\times(n-i)!
\]

用树状数组维护一下\(\sum\)里面的东西,前缀积维护后面的东西。


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch>'9'||ch<'0')) ch=getchar();
if(ch=='-') ch=getchar(),fh=-1;
else fh=1;
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
x*=fh;
} #define int long long const int maxn=1000007;
const int mod=998244353; int n;
int times[maxn],a[maxn]; int c[maxn];
void add(int x,int k){
while(x<=n){c[x]+=k;x+=((x)&(-x));}
} int query(int x){
int res=0;
while(x){res+=c[x];x-=(x&(-x));}
return res;
} int ans; signed main(){
read(n);times[0]=1;
for(int i=1;i<=n;i++){
add(i,1);times[i]=times[i-1]*i%mod;
read(a[i]);
}
for(int i=1;i<=n;i++){
ans=(ans+(query(a[i])-1)*times[n-i]%mod)%mod;
add(a[i],-1);
}
ans=(ans+1)%mod;
printf("%lld\n",ans);
return 0;
}

LG5367 「模板」康托展开 康托展开的更多相关文章

  1. 「模板」 线段树——区间乘 && 区间加 && 区间求和

    「模板」 线段树--区间乘 && 区间加 && 区间求和 原来的代码太恶心了,重贴一遍. #include <cstdio> int n,m; long l ...

  2. 「模板」 FHQ_Treap 区间翻转

    「模板」 FHQ_Treap 区间翻转 没有旋转的 Treap 实现区间操作的功能,很好理解,也很好写,只是速度不算太快. 对于要翻转的区间,把整棵 Treap(存有区间 \([1,n]\) 的信息) ...

  3. 「模板」 FHQ_Treap

    「模板」 FHQ_Treap 我也是偶然发现我还没发过FHQ_Treap的板子. 那就发一波吧. 这个速度实在不算快,但是不用旋转,并且好写. 更重要的是,Splay 可以做的事情它都可以做!比如区间 ...

  4. 「模板」 树链剖分 HLD

    「模板」 树链剖分 HLD 不懂OOP的OIer乱用OOP出人命了. 谨此纪念人生第一次类套类. 以及第一次OI相关代码打过200行. #include <algorithm> #incl ...

  5. Solution -「LOJ #138」「模板」类欧几里得算法

    \(\mathcal{Description}\)   Link.   \(T\) 组询问,每次给出 \(n,a,b,c,k_1,k_2\),求 \[\sum_{x=0}^nx^{k_1}\left\ ...

  6. 「模板」「讲解」Treap名次树

    Treap实现名次树 前言 学平衡树的过程可以说是相当艰难.浏览Blog的过程中看到大量指针版平衡树,不擅长指针操作的我已经接近崩溃.于是,我想着一定要写一篇非指针实现的Treap的Blog. 具体如 ...

  7. 「模板」Splay

    代码说明 对于一些变量进行说明: 变量名 说明 rt 树根 ff[u] 点 \(u\) 的父节点,特别地, ff[rt]=0 ch[u][0|1] 点 \(u\) 的 左/右儿子 siz[u] 点 \ ...

  8. 「模板」AC自动机

    目录 说明 普通版本 询问更改版 拓扑优化版本 说明 这篇博客只挂模板,具体分析请膜拜大佬 hyfhaha 大佬. 普通版本 题目传送门 #include<cstdio> #include ...

  9. 「模板」可持久化 HFQ-Treap

    老师用的是静态数组的写法,开了很多数组- 其实个人更倾向于 struct 或者用 class 封装起来. 但是鉴于太难打 好吧,是我懒得打. 然后就借鉴了老师的模板,写出了属于自己的 压行 风格. 代 ...

随机推荐

  1. 生成 RSA 公钥和私钥的方法

    在使用 RSA 加密算法时,需要使用到一对 公钥 和 私钥,生成 公钥 和 私钥 需要借助 openssl 这款工具,下载这款工具的地址如下: http://slproweb.com/products ...

  2. tf.slice()

    原文连接:https://www.jianshu.com/p/71e6ef6c121b tf.slice()到底要怎么切呢?下面通过列子来看看 方程的signature是这样的: def slice( ...

  3. Redis 设计与实现,看 SDS(Simple Dynamic String) 感悟

    Redis 设计与实现,看 SDS(Simple Dynamic String) 感悟 今天在看 Redis 设计与实现这本书的时候,发现了里面系统定义的数据结构 SDS,中文名为 简单动态字符串.对 ...

  4. ubuntu删除文件和文件夹的rm命令

    在Ubuntu中好多文件或文件夹是不能使用右键删除的,因此知道删除文件或文件夹的rm命令显得尤为重要. rm命令的语法 rm [选项] 文件名或文件夹名 rm命令的一些选项 -f.--force 强力 ...

  5. mysql启动报错:Failed to start LSB: start and stop MySQL

    报错信息: [root@youxx- bin]# service mysql status Redirecting to /bin/systemctl status mysql.service ¡ñ ...

  6. Elasticsearch 中映射参数doc_values 和 fielddata分析比较

    doc_values 默认情况下,大部分字段是索引的,这样让这些字段可被搜索.倒排索引(inverted index)允许查询请求在词项列表中查找搜索项(search term),并立即获得包含该词项 ...

  7. 宣布Visual Studio Code Installer for Java

    自从第一个Java语言服务器在微软苏黎世办公室的一个小型会议室的黑客马拉松中开发已经差不多3年了,该会议室的人员来自Red Hat,IBM,Codenvy和Microsoft,后来成为Visual S ...

  8. PIE SDK水深提取算法

    1.算法功能简介 水深提取算法就是根据输入的水位设为d,dem设为h 这两个数据做一个差值运算,则水深计算公式为d-h;本示例中的是基于洞庭湖提取的水体矢量文件的范围来计算dem和水位25米的差值. ...

  9. minggw 安装

    windows上如果没有安装 visual studio, 也就是俗称的vs, 在安装一些带有c或者c++代码的Python模块的时候, 会报错Unable to find vcvarsall.bat ...

  10. django中视图函数中装饰器

    方法一 给指定方法加 from django.utils.decorators import method_decorator class xx(View): @method_decorator(装饰 ...