【CF765F】Souvenirs

题面

洛谷

题解

我们可以发现,对于某个右端点\(i\),左端点\(j\)在由\(i\rightarrow 1\)的过程中,每一段的答案是单调不增的,由这个性质,我们想办法维护出加入右端点\(i\)后的答案。

我们只考虑形如\(j<i,a_i<a_j\)的答案,因为其他的情况我们只需要将值域翻转即可得到答案。

根据我们上面的说法,你首先需要找到一个\(j\),使得\(a_j>a_i\)且\(j\)最大,这个可以用值域线段树维护。然后我们又要找到一个一个\(j'\),使得\(a_{j'}-a_i<a_j-a_i\),那么我们可以令\(j=j'\),继续更新答案。

如果仅仅是这样的话,我们的复杂度还是不满足要求的,但是限制\(a_{j'}-a_i<a_j-a_i\)可以转化为\(a_{j'}-a_i<a_j-a_{j'}\),因为大于的情况之前肯定以及更新过了,那么我们没必要再次更新,而这个限制又可以变为\(a_{j'}-a_i<\frac 12(a_j-a_i)\),这样子每次值域减半的话复杂度可以保证。

而维护某个左端点的话可以用树状数组维护后缀取\(\min\)即可。

复杂度\(O(n\log ^2 10^9)\)。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int INF = 1e9;
const int MAX_N = 3e5 + 5;
vector<pair<int, int> > vec[MAX_N];
int N, M, a[MAX_N], ans[MAX_N];
int c[MAX_N];
inline int lb(int x) { return x & -x; }
void Add(int x, int v) { while (x) c[x] = min(c[x], v), x -= lb(x); }
int Min(int x) { int res = INF; while (x <= N) res = min(res, c[x]), x += lb(x); return res; }
struct Node { int ls, rs, v; } t[MAX_N << 5];
int rt[MAX_N], tot;
void modify(int &o, int p, int l, int r, int pos, int v) {
o = ++tot, t[o] = t[p], t[o].v = max(t[o].v, v);
if (l == r) return ;
int mid = (l + r) >> 1;
if (pos <= mid) modify(t[o].ls, t[p].ls, l, mid, pos, v);
else modify(t[o].rs, t[p].rs, mid + 1, r, pos, v);
}
int query(int o, int l, int r, int ql, int qr) {
if (!o || l > r) return 0;
if (ql <= l && r <= qr) return t[o].v;
int mid = (l + r) >> 1, res = 0;
if (ql <= mid) res = max(res, query(t[o].ls, l, mid, ql, qr));
if (qr > mid) res = max(res, query(t[o].rs, mid + 1, r, ql, qr));
return res;
}
void solve() {
for (int i = 1; i <= N; i++) c[i] = INF;
for (int i = 1; i <= tot; i++) t[i] = (Node){0, 0, 0};
tot = 0, memset(rt, 0, sizeof(rt));
for (int i = 1; i <= N; i++) modify(rt[i], rt[i - 1], 0, INF, a[i], i);
for (int i = 1; i <= N; i++) {
int j = query(rt[i - 1], 0, INF, a[i], INF);
while (j) {
Add(j, a[j] - a[i]);
j = query(rt[j - 1], 0, INF, a[i], ((a[i] + a[j]) >> 1) - (~(a[i] + a[j]) & 1));
}
for (auto it : vec[i]) ans[it.second] = min(ans[it.second], Min(it.first));
}
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
N = gi();
for (int i = 1; i <= N; i++) a[i] = gi();
M = gi();
for (int i = 1; i <= M; i++) {
int l = gi(), r = gi();
vec[r].push_back(make_pair(l, i));
ans[i] = INF;
}
solve();
for (int i = 1; i <= N; i++) a[i] = INF - a[i];
solve();
for (int i = 1; i <= M; i++) printf("%d\n", ans[i]);
return 0;
}

【CF765F】Souvenirs的更多相关文章

  1. 【CF765F】Souvenirs 主席树

    [CF765F]Souvenirs 题意:给你一个长度为n的序列{ai},有m个询问,每次询问给出l,r,问在所有$l\le x < y\le r$中,$|a_x-a_y|$的最小值是多少. $ ...

  2. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  3. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  4. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  5. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  6. 【调侃】IOC前世今生

    前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...

  7. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

  8. Python高手之路【一】初识python

    Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...

  9. 【开源】简单4步搞定QQ登录,无需什么代码功底【无语言界限】

    说17号发超简单的教程就17号,qq核审通过后就封装了这个,现在放出来~~ 这个是我封装的一个开源项目:https://github.com/dunitian/LoTQQLogin ————————— ...

随机推荐

  1. Win10自动拨号设置

    1.右击开始->选择计算机管理 2.任务计划->创建基本任务 别人都是选择计算机启动时,我设置了不行,选择当前用户登录时就可以. 3.在程序或脚本设置下,输入“rasdial 宽带连接 账 ...

  2. hadoop中HDFS的NameNode原理

    1. hadoop中HDFS的NameNode原理 1.1. 组成 包括HDFS(分布式文件系统),YARN(分布式资源调度系统),MapReduce(分布式计算系统),等等. 1.2. HDFS架构 ...

  3. echarts的最外层配置项

    每次查echarts的官网上边的配置项不知道分别代表什么,必须点开才知道,所以在这做下Echarts配置项的简单记录 最外层的配置项: title:进行标题与副标题的显示隐藏,位置,字体颜色,字体大小 ...

  4. 详解js中的this指向

    this指向问题是个老生常谈的问题了,现在我给大家一个例子 var obj={ bar:'Cynthia' , foo:function(){ console.log(this.bar,"w ...

  5. byte[],File和InputStream的相互转换

    File.FileInputStream 转换为byte[] File file = new File("test.txt"); InputStream input = new F ...

  6. qt5.12 解决显示中文乱码问题

    在菜单栏   文件->选项,找到文本编辑器 文件编码设置如图 在cpp文件中加入 #pragma execution_character_set("utf-8") 之后就可以 ...

  7. C语言scanf函数转换说明表及其修饰符表

    1. 对于上一篇文章,总结printf()输出,C库也包含了多个输入函数, scanf()是最常用的一个,也是经常与printf()经常一起搭配使用的函数之一. scanf()和printf()类似, ...

  8. React源码 Suspense 和 ReactLazy

    React 16.6 提供的一个新的开放一部分功能的 Suspense 代码 import React, { Suspense, lazy } from 'react' const LazyComp ...

  9. PAT 乙级 1011.A+B 和 C C++/Java

    题目来源 给定区间 [−] 内的 3 个整数 A.B 和 C,请判断 A+B 是否大于 C. 输入格式: 输入第 1 行给出正整数 T (≤),是测试用例的个数.随后给出 T 组测试用例,每组占一行, ...

  10. Vue基本用法

    在学习Vue的基本用法之前,我们先简单的了解一些es6的语法 let: 特点:1.局部作用域 2.不会存在变量提升 3.变量不能重复声明 const: 特点:1.局部作用域 2.不会存在变量提升 3. ...