各种卷积类型Convolution
从最开始的卷积层,发展至今,卷积已不再是当初的卷积,而是一个研究方向。在反卷积这篇博客中,介绍了一些常见的卷积的关系,本篇博客就是要梳理这些有趣的卷积结构。
阅读本篇博客之前,建议将这篇博客结合在一起阅读,想必会有更深的理解。另外,不管是什么类型的卷积,我们都把它理解成一种运算操作。
- Group convolution
Group convolution是最早应用在2012年Alexnet的双GPU架构模型中,相当于把channel这一维度均分到两个GPU,进行分组卷积。如图所示:

这篇论文是:ImageNet Classification with Deep Convolutional Neural Networks。由图可见,上下两个并行的网络结构只有在部分层中才有信息交互,而且网络结构一模一样,这就是Group convolution最早的应用,但是在caffe中经常使用的单机多GPU并行训练和上述问题存在本质区别,因为Group convolution是指将channel维度细分成多个group,然后再分组进行Convolution,而多GPU的训练只是一个数据并行分组的方式,其中minibatch和batch之间的关系就是batch=minibatch*GPU_num,这并不存在对channel的分组。
总之,Group convolution是一种卷积操作,想要切分channel,然后分组卷积,运算上没有什么特别的地方。
2.Pointwise convolution
点积,就是卷积核大小是1*1的,那为啥起名点积呢?就是因为这和向量中的点积运算很类似,举个例子,一张3通道的feature map,卷积核大小是1*1*3,那它的运算其实就是:Σ卷积核*单通道feature map。
总之,Pointwise convolution是一种卷积操作,而且是一种特殊的卷积运算,代表着卷积核的大小是1*1。
3.Separable convolution
可分离卷积,这种思路其实就是起了个高深的名字,也很常见。也是想在channel维度上改变经典的卷积运算,咋办呢?经典的卷积核都是k*k*channel大小的,其中channel是上一层的输出即本层的输入,这不太好,我们想任意指定一个channel,作为卷积核的大小,这样并不影响输入输出的特征图的长宽尺寸,仅仅改变了channel这一维度。这就变得很有意思了,同Group convolution不一样的是,可分离卷积可增加channel维度,而并没有依赖GPU。
举个例子,对于经典的卷积运算,如果说所需的参数量为256*3*3*256=589824。而对于可分离卷积,假设我们指定的卷积核是3*3*4,那首先是256*3*3*4=9216,接下来我们得到了4*256=1024个通道数,但是呢?这并没有完成,因为还需要下一个过程将channel重新压缩回256,接着有1024*1*1*256=262144,整个过程就是9216+262144=271360,看看,589824是271360的两倍多。虽然,这在很多框架上也许未能比较出效果的显著差异,那是多方面的原因。
值得一提的是,上面举的例子可以认为是Separable convolution 和Pointwise convolution结合在一起,事实上就是配套使用的。
最早的Separable convolution来源于论文:Simplifying ConvNets for Fast Learning,作者用的是k*1和1*k的卷积核,起名为可分离卷积,而本处的可分离卷积来源于另一篇论文:Xception: Deep Learning with Depthwise Separable Convolutions。
总之,Separable convolution是一种卷积操作,而且是一种特殊的卷积运算,代表着卷积核的channel维度可以自己任意选取。
4.Depthwise convolution
深度卷积,这名字又开始很高深了,其实它的意思就是拓展Separable convolution而来,我们可以让卷积核的channel维度等于1啊,这样就是深度卷积,意为在每一个channel上做卷积。值得注意的是,往往Separable convolution和Depthwise convolution是统称为Depthwise convolution。假设卷积核的shape是[filter_height, filter_width, in_channels, channel_multiplier],区别仅在于channel_multiplier,由于参考同一篇论文,此处将其统一。
这样说来,前面的例子中其实就是Depthwise separable convolution = Depthwise convolution + Pointwise convolution,这就是深度可分离卷积的真正内涵。这也就是以下论文的工作:Xception: Deep Learning with Depthwise Separable Convolutions
总之,Depthwise convolution是一种卷积操作,和Separable convolution一样,表示对channel维度进行卷积的一种方式。
5.Dilated convolution
空洞卷积是解决pixel-wise输出模型的一种常用的卷积方式。一种普遍的认识是,pooling下采样操作导致的信息丢失是不可逆的,通常的分类识别模型,只需要预测每一类的概率,所以我们不需要考虑pooling会导致损失图像细节信息的问题,但是做像素级的预测时(譬如语义分割),就要考虑到这个问题了。那么空洞卷积可以用下图来说明:

也就是以下论文:Multi-scale context aggregation by dilated convolutions
总之,空洞卷积是卷积运算的一种方式,在于增大了感受野却不丢失语义信息。
各种卷积类型Convolution的更多相关文章
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 卷积(convolution)与相关(correlation)(matlab 实现)
1. 卷积(convolution) 输出 y(n) 是作为在 x(k) 和 h(n−k)(反转和移位)重叠之下的样本和求出的. 考虑下面两个序列: x(n)=[3,11,7,0,−1,4,2],−3 ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 转置卷积Transposed Convolution
转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值 ...
- 信号处理——卷积(convolution)的实现
作者:桂. 时间:2017-03-07 22:33:37 链接:http://www.cnblogs.com/xingshansi/p/6517301.html 前言 信号时域.频域对应关系,及其D ...
- [翻译] 扩张卷积 (Dilated Convolution)
英文原文: Dilated Convolution 简单来说,扩张卷积只是运用卷积到一个指定间隔的输入.按照这个定义,给定我们的输入是一个2维图片,扩张率 k=1 是通常的卷积,k=2 的意思是每个输 ...
- 空洞卷积(dilated Convolution) 与感受野(Receptive Field)
一.空洞卷积 空洞卷积是是为了解决基于FCN思想的语义分割中,输出图像的size要求和输入图像的size一致而需要upsample,但由于FCN中使用pooling操作来增大感受野同时降低分辨率,导致 ...
- tensorflow的卷积和池化层(二):记实践之cifar10
在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tenso ...
随机推荐
- 运用fancybox弹出div的方式弹出视频界面
fancybox可以弹出很多窗体,甚至一个swf格式的小视频.但这样的swf视频播放的时候并没有任何的控件.只能重头看到尾,或者关闭.我们可以利用fancybox弹出div盒子的方式配合html5很快 ...
- 【Alpha】第六次Scrum meeting
今日任务一览: 姓名 今日完成任务 所耗时间 刘乾 今日完成了python的一个template引擎airspeed的使用,并使用该引擎成功跑出一份latex模板替换文件. Issue链接:https ...
- nodeJs上传附件
两种方案: 这两种方案传参还是有区别额 在nodeJs中上传附件调用了 multer 的中间件,采用这个中间件来上传 首先是表单(前端部分): <!DOCTYPE html> <ht ...
- 【Leetcode】81. Search in Rotated Sorted Array II
Question: Follow up for "Search in Rotated Sorted Array": What if duplicates are allowed? ...
- python 如何写CMD命令工具
#-*- coding: UTF- -*- import argparse import sys: sys.argv.append('--help') parser = argparse.Argume ...
- TCP/IP之蓟辽督师 转
原创: 刘欣 码农翻身 2016-11-07 本文续<TCP/IP之大明内阁>, 不了解背景的同学可以先看看上一篇文章, 当然这篇也是<TCP/IP之大明邮差>的前传, 主要讲 ...
- Java之Set的使用场景
2.Set使用场景 API介绍: java.util.Set接口和java.util.List接口一样,同样继承自Collection接口, 它与Collection接口中的方法基本一致,并没有对Co ...
- BZOJ 4361 isn | DP 树状数组
链接 BZOJ 4361 题面 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案,答案模10^9+7. ...
- dp乱写1:状态压缩dp(状压dp)炮兵阵地
https://www.luogu.org/problem/show?pid=2704 题意: 炮兵在地图上的摆放位子只能在平地('P') 炮兵可以攻击上下左右各两格的格子: 而高原('H')上炮兵能 ...
- 【bzoj4009】 HNOI2015—接水果
http://www.lydsy.com/JudgeOnline/problem.php?id=4009 (题目链接) 题意 给出一颗无根树.有一些路径记为$P_i$,这些路径有两个端点和一个权值$W ...