嘟嘟嘟

只要每一次将优先级最高的上面的物品移走,就一定能保证是最优解。

所以我们只要想办法简化这个模拟移物品的过程,看完了题解后,发现可以这么想,我们可以把两个栈头碰头的挨在一起,然后设一个指针代表两个栈的分界线,这样移动物品就变成了移动指针,而每一次移动的步数,就是指针和这个物品之间的距离。

开始的时候这个序列每一位都是1,然后如果删除了物品 i,就将 a[i] = 0,这样移动距离就是区间和了,然后用线段树维护即可。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter printf("\n")
#define space printf(" ")
#define Mem(a) memset(a, 0, sizeof(a))
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const int eps = 1e-;
const int maxn = 1e5 + ;
inline ll read()
{
ll ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch))
{
ans = ans * + ch - ''; ch = getchar();
}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar(x % + '');
} int n1, n2, N;
ll a[maxn], t[maxn];
int pos[maxn]; int l[maxn << ], r[maxn << ], sum[maxn << ];
void build(int L, int R, int now)
{
l[now] = L; r[now] = R;
if(L == R) {sum[now] = ; return;}
int mid = (L + R) >> ;
build(L, mid, now << );
build(mid + , R, now << | );
sum[now] = sum[now << ] + sum[now << | ];
}
void update(int id, int now)
{
if(l[now] == r[now]) {sum[now] = ; return;}
int mid = (l[now] + r[now]) >> ;
if(id <= mid) update(id, now << );
else update(id, now << | );
sum[now] = sum[now << ] + sum[now << | ];
}
int query(int L, int R, int now)
{
if(l[now] == L && r[now] == R) return sum[now];
int mid = (l[now] + r[now]) >> ;
if(R <= mid) return query(L, R, now << );
else if(L > mid) return query(L, R, now << | );
else return query(L , mid, now << ) + query(mid + , R, now << | );
} ll ans = ; int main()
{
n1 = read(); n2 = read();
N = n1 + n2;
for(int i = n1; i > ; --i) a[i] = read();
for(int i = n1 + ; i <= N; ++i) a[i] = read();
for(int i = ; i <= N; ++i) t[i] = a[i];
sort(t + , t + N + ); //离散化优先级
for(int i = ; i <= N; ++i) a[i] = lower_bound(t + , t + N + , a[i]) - t;
for(int i = ; i <= N; ++i) pos[a[i]] = i; //记录每一个优先级所在位置
build(, N, );
int x = pos[N] > n1 ? n1 + : n1; //指针刚开始可以在n1处,也可以在n2处,需判断
for(int i = N; i > ; --i)
{
if(pos[i] < x) ans += query(pos[i] + , x, );
else if(pos[i] > x) ans += query(x, pos[i] - , );
//一定要有if(pos[i] > x),因为刚开始可能优先级最大的在栈顶,不需移动,否则会RE
x = pos[i]; //移动指针
update(x, );
}
write(ans); enter;
return ;
}

[JLOI2013]删除物品的更多相关文章

  1. [bzoj3192][JLOI2013]删除物品(树状数组)

    3192: [JLOI2013]删除物品 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 872  Solved: 508[Submit][Status ...

  2. 洛谷 P3253 [JLOI2013]删除物品 解题报告

    P3253 [JLOI2013]删除物品 题目描述 箱子再分配问题需要解决如下问题: (1)一共有\(N\)个物品,堆成\(M\)堆. (2)所有物品都是一样的,但是它们有不同的优先级. (3)你只能 ...

  3. 3192: [JLOI2013]删除物品

    3192: [JLOI2013]删除物品 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1366 Solved: 794 [Submit][Statu ...

  4. [bzoj3192][JLOI2013]删除物品_树状数组_栈

    删除物品 bzoj-3192 JLOI-2013 题目大意:给你n个物品,分成2堆.所有的物品有不同的优先级.我只可以将一堆中的堆顶移动到另一个堆的堆顶.而如果当前物品是全局所有物品中优先级最高的,我 ...

  5. bzoj 3192: [JLOI2013]删除物品

    Description   箱子再分配问题需要解决如下问题:  (1)一共有N个物品,堆成M堆.  (2)所有物品都是一样的,但是它们有不同的优先级.  (3)你只能够移动某堆中位于顶端的物品.  ( ...

  6. BZOJ3192:[JLOI2013]删除物品——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3192 箱子再分配问题需要解决如下问题: (1)一共有N个物品,堆成M堆. (2)所有物品都是一样的 ...

  7. BZOJ3192: [JLOI2013]删除物品(splay)

    Description   箱子再分配问题需要解决如下问题:  (1)一共有N个物品,堆成M堆.  (2)所有物品都是一样的,但是它们有不同的优先级.  (3)你只能够移动某堆中位于顶端的物品.  ( ...

  8. [JLOI2013]删除物品 树状数组

    当时考试时间剩下太短了然后就挂掉了..其实是个简单的数据结构. 话说一看最小还以为是动规呢.. 将两堆头对头排.比如样例就是 541|273 因为是必须有优先级次序,依次拿的话,看优先级大小相邻的两个 ...

  9. BZOJ 3192: [JLOI2013]删除物品(树状数组)

    题面: https://www.lydsy.com/JudgeOnline/problem.php?id=3192 题解: 首先每次一定是来回移动直到最大的到顶上. 所以我们可以将第两个堆的堆顶接起来 ...

随机推荐

  1. CruiseControl 安装配置

    https://sourceforge.net/projects/ccnet/files/CruiseControl.NET%20Releases/ 一个完整的配置文件(VS2010的解决方案)其他版 ...

  2. C# 往线程里传参数的方法总结

    Thread (ParameterizedThreadStart) 初始化 Thread 类的新实例,指定允许对象在线程启动时传递给线程的委托.   Thread (ThreadStart) 初始化 ...

  3. 6.C#知识点:反射

    1.反射是什么? 反射提供描述组件,模块和类型的对象(类型为Type).您可以使用反射来动态创建类型的实例,将类型绑定到现有对象,或从现有对象获取类型,并调用其方法或访问其字段和属性.如果您在代码中使 ...

  4. 使用Spring的AbstractRoutingDataSource类来进行拓展多数据源

    1.继承抽象类AbstractRoutingDataSource 通过重写这个抽象类的determineCurrentLookupKey()方法来决定返回哪个数据库. 2.配置多个数据库 <be ...

  5. 线程基础的一些理解(一)(java)

     一.多线程的基本概念 线程是指进程中的一个执行场景,也就是执行流程,所以我们首先要聊一聊进程,以及进程和线程的关系 1.什么是进程? 一个进程对应一个应用程序,就像我们在windows系统中启动Wo ...

  6. 5月23日——SPA单页面应用的原理

    一.什么是SPA(SPA 的概念) 单页 Web 应用 (single-page application 简称为 SPA),简单理解为:仅仅在web页面初始化时加载相应的HTML.JavaScript ...

  7. (1)H5实现音乐播放器【正在播放-歌词篇】

    近期闲来无事,就想着复习一下前端的东西,然后正好跟朋友搞了一个公共开放的音乐api接口,就想着写一个音乐播放器玩玩! 话不多说,直接上图,然后上代码 [播放器显示正在播放] 实现功能: 1:歌词随着歌 ...

  8. git push报错error: failed to push some refs to 'git@github.com'

    git push报错error: failed to push some refs to 'git@github.com' $ git push -u origin master To git@git ...

  9. javaSE中JDK提供的四种线程池

    对javaSE中JDK提供的四种线程池稍作整理   一.Executor   package java.util.concurrent; /** * @since 1.5 * @author Doug ...

  10. Maven学习(五)使用Maven构建多模块项目

    使用Maven构建多模块项目 一般的web项目构成: 建立解决方案目录parent 首先使用命令进入到我们需要建立maven项目的目录: mvn archetype:generate -DgroupI ...