题意

题目链接

Sol

这题能想到费用流就不难做了

从S向(1, 1)连费用为0,流量为K的边

从(n, n)向T连费用为0,流量为K的边

对于每个点我们可以拆点限流,同时为了保证每个点只被经过一次,需要拆点。

对于拆出来的每个点,在其中连两条边,一条为费用为点权,流量为1,另一条费用为0,流量为INF

相邻两个点之间连费用为0,流量为INF的边。

跑最大费用最大流即可

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? EOF : *p1++)
//char buf[(1 << 22)], *p1 = buf, *p2 = buf;
using namespace std;
const int MAXN = 51, MAX = 1e5 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9, PI = acos(-1);
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = (x * 10 + c - '0') % mod, c = getchar();
return x * f;
}
int N, K, S = 0, T = 1e5 - 1, a[MAXN][MAXN], dis[MAX], vis[MAX], Pre[MAX], id[MAXN][MAXN][2], cnt, MaxCost;
struct Edge {
int u, v, w, f, nxt;
}E[MAX];
int head[MAX], num;
inline void add_edge(int x, int y, int w, int f) {
E[num] = (Edge) {x, y, w, f, head[x]};
head[x] = num++;
}
inline void AE(int x, int y, int w, int f) {
add_edge(x, y, w, f);
add_edge(y, x, -w, 0);
}
bool SPFA() {
queue<int> q; q.push(S);
memset(dis, -0x3f, sizeof(dis));
memset(vis, 0, sizeof(vis));
dis[S] = 0;
while(!q.empty()) {
int p = q.front(); q.pop(); vis[p] = 0;
for(int i = head[p]; ~i; i = E[i].nxt) {
int to = E[i].v;
if(E[i].f && dis[to] < dis[p] + E[i].w) {
dis[to] = dis[p] + E[i].w; Pre[to] = i;
if(!vis[to]) vis[to] = 1, q.push(to);
}
}
}
return dis[T] > -INF;
}
void F() {
int canflow = INF;
for(int i = T; i != S; i = E[Pre[i]].u) chmin(canflow, E[Pre[i]].f);
for(int i = T; i != S; i = E[Pre[i]].u) E[Pre[i]].f -= canflow, E[Pre[i] ^ 1].f += canflow;
MaxCost += canflow * dis[T];
}
void MCMF() {
while(SPFA()) F();
}
signed main() {
// freopen("a.in", "r", stdin);
memset(head, -1, sizeof(head));
N = read(); K = read();
for(int i = 1; i <= N; i++)
for(int j = 1; j <= N; j++)
a[i][j] = read(), id[i][j][0] = ++cnt, id[i][j][1] = ++cnt;
AE(S, id[1][1][0], 0, K);
AE(id[N][N][1], T, 0, K);
for(int i = 1; i <= N; i++) {
for(int j = 1; j <= N; j++) {
AE(id[i][j][0], id[i][j][1], a[i][j], 1);
AE(id[i][j][0], id[i][j][1], 0, INF);
if(i + 1 <= N) AE(id[i][j][1], id[i + 1][j][0], 0, INF);
if(j + 1 <= N) AE(id[i][j][1], id[i][j + 1][0], 0, INF);
}
}
MCMF();
printf("%d", MaxCost);
return 0;
}
/*
3 2
1 2 3
0 2 1
1 4 2
*/

洛谷P2045 方格取数加强版(费用流)的更多相关文章

  1. 洛谷 - P2045 - 方格取数加强版 - 费用流

    原来这种题的解法是费用流. 从一个方格的左上走到右下,最多走k次,每个数最多拿走一次. 每次走动的流量设为1,起始点拆点成限制流量k. 每个点拆成两条路,一条路限制流量1,费用为价值相反数.另一条路无 ...

  2. 洛谷 P2045 方格取数加强版【费用流】

        题目链接:https://www.luogu.org/problemnew/show/P2045 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现 ...

  3. 洛谷P2045 方格取数加强版 最小费用流

    Code: #include<cstdio> #include<cstring> #include<algorithm> #include<queue> ...

  4. [洛谷P2045]方格取数加强版

    题目大意:有一个n*n的矩阵,每个格子有一个非负整数,规定一个人从(1,1)开始,只能往右或下走,走到(n,n)为止,并把沿途的数取走,取走后数变为0.这个人共取n次,求取得的数的最大总和. 解题思路 ...

  5. LG2045 方格取数加强版 费用流

    问题描述 LG2045 题解 费用流. 套路拆点,把\((i,j)\)拆为两个点,在这两个点之间连边:一条边流量为\(1\),费用为\(a_{i,j}\),另一条边为流量为\(INF\),费用为\(0 ...

  6. P2045 方格取数加强版

    P2045 方格取数加强版 题目描述 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格 ...

  7. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  8. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  9. 洛谷 P1004 方格取数 题解

    P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...

随机推荐

  1. Swift 里 Array (一)内存结构

    public struct Array<Element>: _DestructorSafeContainer { #if _runtime(_ObjC) @usableFromInline ...

  2. 简单理解jQuery中$.getJSON、$.get、$.post、$.ajax用法

    在WEB开发中异步请求方式普遍使用,ajax技术减少程序员的工作量,也提升用户交互体验.AJAX的四种异步请求方式都能实现基本需求,闲话不多说,直接切入正题. 1.$.getJSON $.getJSO ...

  3. redis集成相关工具类

    package cn.yiyuan.util; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; i ...

  4. 桶排序和计数排序的理解实现和比较(Java)

    比较和非比较的区别 常见的快速排序.归并排序.堆排序.冒泡排序等属于比较排序.在排序的最终结果里,元素之间的次序依赖于它们之间的比较.每个数都必须和其他数进行比较,才能确定自己的位置.比较排序的优势是 ...

  5. Spring Boot 中使用 Jedis 及 Lettuce的对比

    首先,同样的程序,采用不同方式的Redis连接方式. defautl : 默认,0配置 ,也就是走的是 lettuce 单通道方式.   端口:8081 jedis : 使用Jedis 连接池.    ...

  6. 机器学习基础——模型参数评估与选择

    当看过一些简单的机器学习算法或者模型后,对于具体问题该如何评估不同模型对具体问题的效果选择最优模型呢. 机器学习分类 1. 经验误差.泛化误差 假如m个样本中有a个样本分类错误 错误率:E = a / ...

  7. 【Java初探03】——流程控制语句

    做任何事情都应当遵守一定的原则,程序设计也是如此,需要有流程控制语言来实现与用户的交流.流程控制对于任何一门编程语言来说都是至关重要的,它提供了控制程序步骤的基本手段,如果没有流程控制语句,整个程序将 ...

  8. linux下更改时区

    起因: 装系统时一走神把时区选错了,导致时间不正确,但是又不想重装,所以找了一下解决方法. 解决方案: 我的环境时这样的,其他的环境没试过. [root@werserver01 ~]# cat /et ...

  9. GoogLeNetv4 论文研读笔记

    Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning 原文链接 摘要 向传统体系结构中引入 ...

  10. 下载imagenet2012数据集,以及label说明

    updated@2018-12-07 15:22:08 官方下载地址:http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads , ...