What is SAP R/3?

SAP R/3 is a 3 tier architecture consisting of 3 layers

  1. Presentation
  2. Application
  3. Database

In simple words, it’s a client server architecture.

  • R signifies Real-time system
  • 3 represents -  3-tier architecture.

User's PC:-  Users can access SAP system in two ways:-

  1. Through SAP GUI
  2. Through Web browser

It's called front-end. Only the front-end is installed in the user's PC not the application/database servers.

Front-end takes the user's requests to database server and application servers.

Application Servers: -  Application server is built to process business-logic. This workload is distributed among multiple application servers. With multiple application servers, the user can get the output more quickly.

Application server exists at a remote a location as compared to the location of the user PC.

Database Server: -Database server stores and retrieves data as perSQLqueries generated by ABAP andJavaapplications.

Database and Application may exist on the same or different physical location.

Understanding different SAP layers

Presentation Layer:

The Presentation Layer contains the software components that make up the SAPgui (graphical user interface). This layer is the interface between the R/3 System and its users. The R/3 System uses the SAPgui to provide an intuitive graphical user interface for entering and displaying data.

The presentation layer sends the user's input to the application server, and receives data for display from it. While a SAPgui component is running, it remains linked to a user's terminal session in the R/3 System.

 

Application Layer:

The Application Layer consists of one or more application servers and a message server. Each application server contains a set of services used to run the R/3 System. Theoretically, you only need one application server to run an R/3 System. In practice, the services are distributed across more than one application server. The message server is responsible for communication between the application servers. It passes requests from one application server to another within the system. It also contains information about application server groups and the current load balancing within them. It uses this information to assign an appropriate server when a user logs onto the system.

Database Layer:

The Database Layer consists of a central database system containing all of the data in the R/3 System. The database system has two components - the database management system (DBMS), and the database itself. SAP has manufactured its own database namedHanabut is compatible with all major databases such as Oracle.All R/3 data is stored in the database. For example, the database contains the control and customizing data that determine how your R/3 System runs. It also contains the program code for your applications. Applications consist of program code, screen definitions, menus, function modules, and various other components. These are stored in a special section of the database called the R/3 Repository, and are accordingly called repository objects. R/3 repository, objects are used in ABAP workbench.

Understanding the components of SAP R/3 3-tier Architecture:-

ABAP+Java System Architecture

 
  1. Message Server:It handles communication between distributed Dispatchers in ABAP system.
  2. Dispatcher Queue: Various work process types are stored in this queue.
  3. Dispatcher: It distributes requests to the work processes.
  4. Gateway: It enables communication between SAP system and between SAP system and external systems.
  5. ABAP-Work processes: - It separately executes dialog steps in R/3 applications.

    Types of work processes are given as below:-

  6. Memory-pipes: It enables communication between ICM and ABAP work processes.
  7. Message Server: It handles java dispatchers and server processes.It enables communication within java runtime environment.
  8. Enqueue Server:It handles logical locks that are set by the executed Java application program in a server process.
  9. Central Services: Java cluster requires a special instance of the central services for managing locks and transmitting messages and data. Java cluster is a set of processes that work together to build the reliable system. Instance is group of resources such as memory, work processes and so on.
  10. Java Dispatcher: It receives the client requests and forwards to the server process.
  11. SDM: Software Deployment Manager is used to install J2EE components.
  12. Java Server Processes: It can processes a large number of requests simultaneously.
  13. Threading: Multiple Processes executes separately in the background, this concept is called threading.
  14. ICM: It enables communication between SAP system and HTTP, HTTPS, SMTP protocol. It means by entering system URL in the browser you can access SAP from browser also.

One more component is JCO. JCO is used to handle communication between java dispatcher and ABAP dispatcher when system is configured as ABAP+Java.

How the SAP Logon Process works?

Step 1) Once a user clicks on the SAP system from GUI, the user request is forwarded to Dispatcher.

Step 2) Request is stored in Request queues first. Dispatcher follows First in First out rule. It will find free work process and if available will be assigned.

Step 3) As per user request, particular work process is assigned to user. For example, when user login to the system then Dialog work process is assigned to the user. If user runs a report in background then background work process is assigned to the user.When some modifications are done at database level then update workprocess is assigned.So as per user's action workprocess is assigned.

Step 4) Once user is assigned the dialog workprocess then user authorizations, user's current setting are rolled in to work-process in shared memory to access user's data.Once dialog step is executed then user's data is rolled out from workprocess. Thus shared memory will be cleaned and other user's data can be saved in shared memory area. Dialog step means the screen movements. In a transaction, when a users jumps from one screen to other the process is called a dialog step.

Step 5) First work process will find the data in the buffer. If it finds data in buffer then there is no need to retrieve data from database. Thus response time is improved and this process is called hit.If it does not find the data in buffer then it will find the data in database and this process is called miss. Hit ratio should be always higher than miss ratio. It improves the performance of system .

Step 6) Other requested data is queried from the database and once the process is complete,the result is sent back to GUI via dispatcher.

Step 7) At the end user's data is removed from shared memory so the memory will be available to other users.This process is called roll-out.

SAP based the architecture of R/3 on a three-tier client/server model.

 
  • Presentation Server
  • Application Server
  • Database Server

Presentation Server

The presentation server is actually a program named sapgui.exe. It is usually installed on a user’s workstation. To start it, the user double-clicks on an icon on the desktop or chooses a menu path. When started, the presentation server displays the R/3 menus within a window. This window is commonly known as the SAPGUI, or the user interface (or simply, the interface). The interface accepts input from the user in the form of keystrokes, mouse-clicks, and function keys, and sends these requests to the application server to be processed. The application server sends the results back to the SAPGUI which then formats the output for display to the user.
Application Server

 
 

An application server is a set of executables that collectively interpret the ABAP/4 programs and manage the input and output for them. When an application server is started, these executables all start at the same time. When an application server is stopped, they all shut down together. The number of processes that start up when you bring up the application server is defined in a single configuration file called the application server profile.

Each application server has a profile that specifies its characteristics when it starts up and while it is running. For example, an application sever profile specifies:

Number of processes and their types
Amount of memory each process may use
Length of time a user is inactive before being automatically logged off

The application server exists to interpret ABAP/4 programs, and they only run there-the programs do not run on the presentation server. An ABAP/4 program can start an executable on the presentation server, but an ABAP/4 program cannot execute there.

If your ABAP/4 program requests information from the database, the application server will format the request and send it to the database server.
Discovering the Database Server

The database server is a set of executables that accept database requests from the application server. These requests are passed on to the RDBMS (Relation Database Management System). The RDBMS sends the data back to the database server, which then passes the information back to the application server. The application server in turn passes that information to your ABAP/4 program.

There is usually a separate computer dedicated to house the database server, and the RDBMS may run on that computer also, or may be installed on its own computer.
Configuring the Servers

In a three-tier client/server configuration, the presentation servers, applications servers, and database server all run on separate machines. This is the most common configuration for large systems, and is common in production.

In the distribution presentation configuration, the application and database servers are combined on one computer and the presentation servers run separately. This is used for smaller systems, and is often seen on a development system.

In the two-tier client/server configuration, the presentation and application servers are combined and the database server is separate. This configuration is used in conjunction with other application servers. It is used for a batch server when the batch is segregated from the online servers. A SAPGUI is installed on it to provide local control.

When all servers are combined onto a single machine, you have a central configuration. This is rarely seen because it describes a standalone R/3 system with only a single user.

Defining an R/3 System

The simplest definition of an R/3 system is “one database.” In one R/3 system, there is only one database. To expand the definition, R/3 is considered to be all of the components attached to that one database. One R/3 system is composed of one database server accessing a single database, one or more application servers, and one or more presentation servers. By definition, it is all of the components attached to one database. If you have one database, you have one system. If you have one system, you have one database. During an implementation, there is usually one system (or one database) assigned to development, one or more systems designated for testing, and one assigned to production.

The term R/3 system landscape denotes a description of the number of systems within an SAP installation and how they are designated, such as development, test, or production.

Defining an R/3 Instance

When you hear someone say the word instance, most of the time, that person will be referring to an application server. The term instance is synonymous with application server.

The term central instance refers to the database server. If an application server and database server both reside on the same machine, the term central instance refers to the computer on which both reside.

In the most general terms, an instance is a server. It is a set of R/3 processes providing services to the R/3 system.

Application Server Architecture

All requests that come in from presentation servers are directed first to the dispatcher. The dispatcher writes them first to the dispatcher queue. The dispatcher pulls the requests from the queue on a first-in, first-out basis. Each request is then allocated to the first available work process. A work process handles one request at a time.

To perform any processing for a user’s request, a work process needs to address two special memory areas: the user context and the program roll area. The user context is a memory area that contains information about the user, and the roll area is a memory area that contains information about the programs execution.

Understanding a User Context

A user context is memory that is allocated to contain the characteristics of a user that is logged on the R/3 system. It holds information needed by R/3 about the user, such as:

  • The user’s current settings
  • The user’s authorizations
  • The names of the programs the user is currently running

When a user logs on, a user context is allocated for that logon. When they log off, it is freed. It is used during program processing, and its importance is described further in the following sections.

Understanding a Roll Area

A roll area is memory that is allocated by a work process for an instance of a program. It holds information needed by R/3 about the program’s execution, such as:

  • The values of the variables
  • The dynamic memory allocations
  • The current program pointer

Each time a user starts a program, a roll area is created for that instance of the program. If two users run the same program at the same time, two roll areas will exist-one for each user. The roll area is freed when the program ends.

NOTE

When speaking to a Basis consultant, you might hear the term roll area used to refer to all roll areas for one user or even all roll areas on one application server. You usually can determine the intended meaning from the context in which it is used.

Both the roll area and the user context play an important part in dialog step processing.

Understanding a Dialog Step

NOTE

A dialog step is used by Basis consultants as the unit of measure for system response time.

A dialog step is the processing needed to get from one screen to the next. It includes all processing that occurs after the user issues a request, up to and including the processing needed to display the next screen. For example, when the user clicks the Enter key on the Change Vendor: Initial Screen, he initiates a dialog step and the hourglass appears, preventing further input. The sapmf02kprogram retrieves the vendor information and displays it on the Change Vendor: Address screen, and the hourglass disappears. This marks the end of the dialog step and the user is now able to make another request.

There are four ways the user can initiate a dialog step. From the SAPGUI:

  • Press Enter.

  • Press a function key.

  • Click on a button on the screen.

  • Choose a menu item.

It is important for an ABAP/4 programmer to know about dialog steps because they form a discrete unit of processing for an ABAP/4 program.

Understanding Roll-In/Roll-Out Processing

An ABAP/4 program only occupies a work process for one dialog step. At the beginning of the dialog step, the roll area and user context are rolled in to the work process. At the end of the dialog step, they are rolled out.

During the roll-in, pointers to the roll area and user context are populated in the work process. This enables the work process to access the data in those areas and so perform processing for that user and that program. Processing continues until the program sends a screen to the user. At that time, both areas are rolled out. Roll-out invalidates the pointers and disassociates these areas from the work process. That work process is now free to perform processing for other requests. The program is now only occupying memory, and not consuming any CPU. The user is looking at the screen that was sent, and will soon send another request.

When the next request is sent from the user to continue processing, the dispatcher allocates that request to the first available work process. It can be the same or a different work process. The user context and roll area for that program are again rolled in to the work process, and processing resumes from the point at which it was left off. Processing continues until the next screen is shown, or until the program terminates. If another screen is sent, the areas are again rolled out. When the program terminates, the roll area is freed. The user context remains allocated until the user logs off.

In a system with many users running many programs, only a few of those programs will be active in work processes at any one time. When they are not occupying a work process, they are rolled out to extended memory and only occupy RAM. This conserves CPU and enables the R/3 system to achieve high transaction throughput.

NOTE

ABAP/4 programs do not have the capability to intercept many common Windows events. The events that generate a lot of messages such as key presses, focus changes, and mouse movements are not passed to ABAP/4 programs. As a result, there is no way of performing some of the functions that are found in other Windows programs. For example, in ABAP/4, you cannot validate the contents of a field when the user presses the Tab key. You must instead wait until the user initiates a dialog step.

Discovering How the Data Is Sent to the Presentation Server

The messages exchanged between the presentation server and the application server are in an SAP proprietary format. The SAPGUI accepts the screen information sent from the application server and formats it appropriately for the platform it is running on. This enables different end-user hardware platforms to connect to a single application server. For example, an OS/2 PC and a Windows PC can both connect to the same application server at the same time.

Understanding the Components of a Work Process

Each work process is composed of the following:

  • A task handler

  • An ABAP/4 interpreter

  • A screen interpreter

  • A database interface

All requests pass through the task handler, which then funnels the request to the appropriate part of the work process.

The interpreters interpret the ABAP/4 code. Notice that there are two interpreters: the ABAP/4 interpreter and the screen interpreter. There are actually two dialects of ABAP/4. One is the full-blown ABAP/4 data processing language and the other is a very specialized screen processing language. Each is processed by its own interpreter.

The database interface handles the job of communicating with the database.

Understanding the Types of Work Processes

There are seven types of work processes. Each handles a specific type of request. The type of work processes and the types of requests that they handle are shown in Table 1.2.

Table 1.2  Types of Work Processes and the Types of Requests they Handle

WP Type

Request Type

D (Dialog)

Dialog requests

V (Update)

Requests to update data in the database

B (Background)

Background jobs

S (Spool)

Print spool requests

E (Enqueue)

Logical lock requests

M (Message)

Routes messages between application servers within an R/3 system

G (Gateway)

Funnels messages into and out of the R/3 system

Understanding the Logon Client

The term logon client has nothing to do with Client/Server-it is completely different.

The number entered here by the user corresponds to a set of rows within each client-dependent table within the database.

Understanding Client-Dependent and Client-Independent Tables

There are two types of tables in an R/3 database: client-dependent and client-independent. A table is client-dependent if the first field is of type CLNT. The length will always be 3, and by convention, this field is always named mandt. If the first field is not of type CLNT, the table is client-independent.

This program selects rows from table lfa1 and writes out lfa1-lifnr. When this program is run, only two rows are selected: only those where mandt equals 800. This happens automatically because the first field in the table is of type CLNT. There are five rows in the table, but the program writes out only those rows where mandt equals 800. If the user were to log on to client 700 and run the same program, three rows of data would be found and written out. If the user were to log on to client 900, only one row of data would be found.

The logon client mechanism divides the rows within a client-dependant table into distinct groups. To access a different set of data, the user logs on and specifies a different client number.

NOTE

The user master records (containing R/3 user IDs) are client-dependent. Therefore, to gain access to a client, the security administrator must create a new user ID for you within that client.

Developers and testers use the logon client mechanism to create and access multiple, independent sets of data within a single table.

For example, assume two typical, asocial programmers are working on an enhancement to the billing system. Jim is modifying the update transaction and Jane is creating a new report to go with Jim’s modifications.

Jane sets up data for her test run, executes her report and obtains output. Jim works in the next cubicle, but due to his antisocial tendencies is blissfully unaware that his transaction uses the same tables as Jane’s report. He runs his transaction and updates the data. Jim got what he wanted, but Jane then modifies her code and runs her program again. Her output differs from the last run, and the differences many not result from her changes, but rather they may result from Jim’s changes. What we have here is a failure to communicate.

If the tables used by Jim and Jane’s programs were client-dependent, they could each log in to separate clients, set up independent sets of data, and test their programs without ever talking to each other. They could perform all of their testing in the comfort of their cubicles and in isolation from their coworkers.

To make their tables client-dependant, they only need mandt as the first field and the R/3 system will take care of the rest. When records are added to the table, the system automatically moves the current logon client into the mandt field when the record is send to the database. Their Open SQL select statements will only return rows where the client number in the table is equal to the their current logon client number. The Open SQL database statements insertupdatemodify, and delete also provide automatic client handling.

If the tables involved are all client-dependent, there can be more than one group of testers working at a time in one test system. Two teams of testers can test divergent functionality in the same set of programs at the same time provided they log on to different logon clients. The updates done by one team will not change the data belonging to the other team.

A training client could also exist on the test system. The students could log on to one client and the testers could log on to another. Both would run the same set of programs, but the programs would access independent sets of data.

NOTE

The average R/3 installation has three systems: development, test, and production. By default, each system comes with three clients installed: 000, 001, and 066. It is common to have from three to six clients in the development and test systems, but rarely will you see more than one client in production.

Sap R/3 Architecture Tutorial的更多相关文章

  1. SAP R/3系统的R和3分别代表什么含义,负载均衡的实现原理

    1972年,SAP诞生,推出了RF系统(实时财务会计系统), 后来命名为R1. R指Real time.3既指第三代系统,又代表3层架构. 三层架构分别为下图的Presentation server ...

  2. SAP computer之architecture

    Simple-As-Possible computer introduces all the cruicial ideas behind computer operation without bury ...

  3. SAP R/3 IDES 4.71 编译前后硬盘空间大小比较

    使用SGEN编译前 使用SGEN编译后

  4. A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)

    A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON  ...

  5. J2EE: JCA (Java Connector Architecture) [转]

    JCA (J2EE 连接器架构,Java Connector Architecture)是对J2EE标准集的重要补充.因为它注重的是将Java程序连接到非Java程序和软件包中间件的开发.连接器特指基 ...

  6. thrift 服务端linux C ++ 与客户端 windows python 环境配置(thrift 自带tutorial为例)

    关于Thrift文档化的确是做的不好.摸索了很久才终于把跨linux与windows跨C++与python语言的配置成功完成.以下是步骤: 1)                 Linux下环境配置 ...

  7. SAP常用命令及BASIS操作

    Pfcg         角色,权限参数文件配置Su53        查看权限对象  st01  跟踪St22         看dump,以分析错误  eg.找到ABAP程序出错的地方,找出fou ...

  8. SAP ECC PP 配置文档

    SAP ECC 6.0 Configuration Document Production Planning & Control (PP) 1. General Settings 1.1 Ma ...

  9. 如何在windows中编写R程序包(转载)

    网上有不少R包的编译过程介绍,挑选了一篇比较详细的,做了稍许修改后转载至此,与大家分享 如何在windows中编写R程序包 created by helixcn modified by binaryf ...

随机推荐

  1. Git文件状态

    在Git中,文件状态是一个非常重要的概念,不同的状态对应不同的操作.因此,要想熟练掌握Git的用法,需要了解Git的几种文件状态. Git库所在的文件夹中的文件大致有4种状态: Untracked:未 ...

  2. webstorm无法显示左边文件夹目录的解决方法

    webstorm无法显示左边文件夹目录的解决方法 方法一 view-->Tool Windows-->Project 就可以显示或者关闭 方法二 1.删除webstorm的配置文件夹 2. ...

  3. Hive中的Row_Number()使用

    语法:row_number() over (partition by 字段a order by 计算项b desc ) rank --这里rank是别名 partition by:类似hive的建表, ...

  4. c++三维静态数组的定义与作为函数的传递

    在c++中,我们可以定义三维数组,并且可以将之作为参数直接传递. 定义: #include <iostream> #include <windows.h> using name ...

  5. linux free命令详解(一)

    一. 作用 free命令可以显示当前系统未使用的和已使用的内存数目,还可以显示被内核使用的内存缓冲区. 二. 语法 free [选项] 三. 选项       默认情况下,即在没有选项的情况下,&qu ...

  6. Vue笔记:使用 mock.js 模拟数据

    在我们的项目实际开发过程中,后端的接口往往是较晚才会提供出来,并且还要写接口文档,如果前端的开发都要等到接口开发完成才开始就非常影响项目整体开发进度了,mock.js 的出现使前后端分离并行开发成为可 ...

  7. html中img图片居中

    直接看代码 style="display:block; margin:0 auto;" 可以看到,蓝色的代码是让 块状元素居中 而红色的代码,是让img转成块状元素 ···原来im ...

  8. Nginx+uwsgi+Django 的web应用环境部署-完整记录

    Python作为当前最火爆最热门,也是最主要的Web开发语言之一,在其二十多年的历史中出现了数十种Web框架,比如Django.Tornado.Flask.Twisted.Bottle和Web.py等 ...

  9. C++ 运算符的重载

    #include <iostream> #include <stdio.h> using namespace std; class Complex //复数类 { public ...

  10. 从nsq中学习如何优雅的退出go 网络程序

    退出运行中的程序,可以粗暴的kill -9 $PID,但这样会破坏业务的完整性,有可能一个正在在执行的逻辑半途而费,从而产生不正常的垃圾数据. 本文总结在go语言中,如何能优雅的退出网络应用,涉及的知 ...