How do you add? UVA - 10943(组合数的隔板法!!)
题意:
把K个不超过N的非负整数加起来,使它们的和为N,有多少种方法?
隔板法。。。不会的可以买一本高中数学知识清单。。。给高中班主任打个广告。。。。
隔板法分两种。。。一种是不存在空集 = C(n-1,m-1)。。。一种是存在空集 = C(n+m-1, m-1)
这题就是存在空集的解法。。。因为可以是0
.只会快速幂写组合数的我瑟瑟发抖。。。赶紧翻了紫书。。。
- #include <iostream>
- #include <cstdio>
- #include <sstream>
- #include <cstring>
- #include <map>
- #include <set>
- #include <vector>
- #include <stack>
- #include <queue>
- #include <algorithm>
- #include <cmath>
- #define MOD 1000000
- #define LL long long
- #define ULL unsigned long long
- #define Pair pair<int, int>
- #define mem(a, b) memset(a, b, sizeof(a))
- #define _ ios_base::sync_with_stdio(0),cin.tie(0)
- //freopen("1.txt", "r", stdin);
- using namespace std;
- const int maxn = , INF = 0x7fffffff;
- LL C[maxn][maxn];
- void init()
- {
- mem(C, );
- for(int i=; i<maxn; i++)
- {
- C[i][] = ;
- for(int j=; j<=i; j++)
- C[i][j] = (C[i-][j-] + C[i-][j]) % MOD;
- }
- }
- int main()
- {
- int n, m;
- init();
- while(cin>> n >> m && n+m)
- {
- printf("%d\n",C[n+m-][m-] % MOD);
- }
- return ;
- }
How do you add? UVA - 10943(组合数的隔板法!!)的更多相关文章
- 数论 UVA 10943
这是一道关于组合数和隔板法的数论题目.题目说的是选出k个不同且不大于N的数字进行相加,要求这些数字之和等于N,结果要求输出这样的数有多少组.这里可以将问题利用隔板法来转换,那么题目的叙述可以转换成:这 ...
- UVA 10943 How do you add? DP
Larry is very bad at math — he usually uses a calculator, whichworked well throughout college. Unfor ...
- UVA 10943 - How do you add? 递推
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVa 10943 (数学 递推) How do you add?
将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...
- UVA 10943 How do you add?
设函数 f(k)(n); 则: f(1)(n)=1; f(2)(n)=f(1)(0)+f(1)(1)+f(1)(2)+...+f(1)(n); f(3)(n)=f(2)(0)+f(2)(1)+f(2) ...
- UVa 10943 How do you add?【递推】
题意:给出n,k,问恰好有k个不超过n的数的和为n的方案数有多少 可以隔板法来做 现在有n个小球放到k个盒子里面,盒子可以为空 那么就是n-k+1个缝隙,放上k-1个隔板(k-1个隔板就分成了k份) ...
- UVa 10883 (组合数 对数) Supermean
在纸上演算一下就能看出答案是:sum{ C(n-1, i) * a[i] / 2^(n-1) | 0 ≤ i ≤ n-1 } 组合数可以通过递推计算:C(n, k) = C(n, k-1) * (n- ...
- 紫书 习题 10-21 UVa 1649 (组合数)
C(n, k) = m, 固定k,枚举k 这里用到了组合数的一个性质 当k固定的时候,C(2 * k, k) 最小 C(m, k)最大(对于这道题而言是这样,因为大于m 就最终答案不可能为m了) 所以 ...
- UVa 10253 (组合数 递推) Series-Parallel Networks
<训练之南>上的例题难度真心不小,勉强能看懂解析,其思路实在是意想不到. 题目虽然说得千奇百怪,但最终还是要转化成我们熟悉的东西. 经过书上的神分析,最终将所求变为: 共n个叶子,每个非叶 ...
随机推荐
- python3 raise HTTPError(req.full_url, code, msg, hdrs, fp) urllib.error.HTTPError: HTTP Error 403: Forbid
1.分析: 如果用 urllib.request.urlopen 方式打开一个URL,服务器端只会收到一个单纯的对于该页面访问的请求,但是服务器并不知道发送这个请求使用的浏览器,操作系统,硬件平台等信 ...
- Controller中添加一个异步的Action
给一段示例代码: public Task<ActionResult> TbReport(string code) { return Task.Factory.StartNew(() =&g ...
- spark-windows(含eclipse配置)下本地开发环境搭建
spark-windows(含eclipse配置)下本地开发环境搭建 >>>>>>注意:这里忽略JDK的安装,JDK要求是1.8及以上版本,请通过 java ...
- 大数据入门第二十二天——spark(一)入门与安装
一.概述 1.什么是spark 从官网http://spark.apache.org/可以得知: Apache Spark™ is a fast and general engine for larg ...
- 2017-2018-2 20155230《网络对抗技术》实验1:PC平台逆向破解(5)M
1.直接修改程序机器指令,改变程序执行流程 2.通过构造输入参数,造成BOF攻击,改变程序执行流 3.注入Shellcode并执行 4.实验感想 注:因为截图是全屏所以右键图片在新的标签页打开观看更加 ...
- vs如何将工程配置,保存到属性表
上次讲到新建一个opencv工程的配置过程,整个流程下来还是非常麻烦的.每次新建一个工程都要走这个流程的话就要疯了! 现在介绍一种将工程配置,保存到属性表的方法,那么下次新建工程时,只要添加这个属性表 ...
- 汇编 inc 和 dec 指令
知识点: inc 加1指令 dec 减1指令 一.加一指令inc inc a 相当于 add a, //i++ 优点 速度比sub指令快,占用空间小 这条指令执行结果影响AF.OF.PF.SF.Z ...
- 汇编 LEA 指令
知识点: LEA指令 &与LEA OD里修改汇编代码 一.LEA指令格式 有效地址传送指令 LEA 格式: LEA 操作数A, 操作数B 功能: 将操作数B的有效地址传送到指定的的 ...
- 解决Docker容器时区及时间不同步的问题
前几天在测试应用的功能时,发现存入数据库中的数据create_time或者update_time字段总是错误,其他数据都是正常的,只有关于时间的字段是错误的. 进入linux服务器中查看,也没有任何的 ...
- .Net Core 分布式微服务框架 - Jimu 添加 Swagger 支持
系列文章 .Net Core 分布式微服务框架介绍 - Jimu .Net Core 分布式微服务框架 - Jimu 添加 Swagger 支持 一.前言 最近有空就优化 Jimu (一个基于.Net ...