题意:

把K个不超过N的非负整数加起来,使它们的和为N,有多少种方法?

隔板法。。。不会的可以买一本高中数学知识清单。。。给高中班主任打个广告。。。。

隔板法分两种。。。一种是不存在空集 = C(n-1,m-1)。。。一种是存在空集 = C(n+m-1, m-1)

这题就是存在空集的解法。。。因为可以是0

.只会快速幂写组合数的我瑟瑟发抖。。。赶紧翻了紫书。。。

  1. #include <iostream>
  2. #include <cstdio>
  3. #include <sstream>
  4. #include <cstring>
  5. #include <map>
  6. #include <set>
  7. #include <vector>
  8. #include <stack>
  9. #include <queue>
  10. #include <algorithm>
  11. #include <cmath>
  12. #define MOD 1000000
  13. #define LL long long
  14. #define ULL unsigned long long
  15. #define Pair pair<int, int>
  16. #define mem(a, b) memset(a, b, sizeof(a))
  17. #define _ ios_base::sync_with_stdio(0),cin.tie(0)
  18. //freopen("1.txt", "r", stdin);
  19. using namespace std;
  20. const int maxn = , INF = 0x7fffffff;
  21. LL C[maxn][maxn];
  22. void init()
  23. {
  24. mem(C, );
  25. for(int i=; i<maxn; i++)
  26. {
  27. C[i][] = ;
  28. for(int j=; j<=i; j++)
  29. C[i][j] = (C[i-][j-] + C[i-][j]) % MOD;
  30. }
  31. }
  32. int main()
  33. {
  34. int n, m;
  35. init();
  36. while(cin>> n >> m && n+m)
  37. {
  38. printf("%d\n",C[n+m-][m-] % MOD);
  39.  
  40. }
  41. return ;
  42. }

How do you add? UVA - 10943(组合数的隔板法!!)的更多相关文章

  1. 数论 UVA 10943

    这是一道关于组合数和隔板法的数论题目.题目说的是选出k个不同且不大于N的数字进行相加,要求这些数字之和等于N,结果要求输出这样的数有多少组.这里可以将问题利用隔板法来转换,那么题目的叙述可以转换成:这 ...

  2. UVA 10943 How do you add? DP

    Larry is very bad at math — he usually uses a calculator, whichworked well throughout college. Unfor ...

  3. UVA 10943 - How do you add? 递推

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  4. UVa 10943 (数学 递推) How do you add?

    将K个不超过N的非负整数加起来,使它们的和为N,一共有多少种方法. 设d(i, j)表示j个不超过i的非负整数之和为i的方法数. d(i, j) = sum{ d(k, j-1) | 0 ≤ k ≤ ...

  5. UVA 10943 How do you add?

    设函数 f(k)(n); 则: f(1)(n)=1; f(2)(n)=f(1)(0)+f(1)(1)+f(1)(2)+...+f(1)(n); f(3)(n)=f(2)(0)+f(2)(1)+f(2) ...

  6. UVa 10943 How do you add?【递推】

    题意:给出n,k,问恰好有k个不超过n的数的和为n的方案数有多少 可以隔板法来做 现在有n个小球放到k个盒子里面,盒子可以为空 那么就是n-k+1个缝隙,放上k-1个隔板(k-1个隔板就分成了k份) ...

  7. UVa 10883 (组合数 对数) Supermean

    在纸上演算一下就能看出答案是:sum{ C(n-1, i) * a[i] / 2^(n-1) | 0 ≤ i ≤ n-1 } 组合数可以通过递推计算:C(n, k) = C(n, k-1) * (n- ...

  8. 紫书 习题 10-21 UVa 1649 (组合数)

    C(n, k) = m, 固定k,枚举k 这里用到了组合数的一个性质 当k固定的时候,C(2 * k, k) 最小 C(m, k)最大(对于这道题而言是这样,因为大于m 就最终答案不可能为m了) 所以 ...

  9. UVa 10253 (组合数 递推) Series-Parallel Networks

    <训练之南>上的例题难度真心不小,勉强能看懂解析,其思路实在是意想不到. 题目虽然说得千奇百怪,但最终还是要转化成我们熟悉的东西. 经过书上的神分析,最终将所求变为: 共n个叶子,每个非叶 ...

随机推荐

  1. python3 raise HTTPError(req.full_url, code, msg, hdrs, fp) urllib.error.HTTPError: HTTP Error 403: Forbid

    1.分析: 如果用 urllib.request.urlopen 方式打开一个URL,服务器端只会收到一个单纯的对于该页面访问的请求,但是服务器并不知道发送这个请求使用的浏览器,操作系统,硬件平台等信 ...

  2. Controller中添加一个异步的Action

    给一段示例代码: public Task<ActionResult> TbReport(string code) { return Task.Factory.StartNew(() =&g ...

  3. spark-windows(含eclipse配置)下本地开发环境搭建

    spark-windows(含eclipse配置)下本地开发环境搭建   >>>>>>注意:这里忽略JDK的安装,JDK要求是1.8及以上版本,请通过 java  ...

  4. 大数据入门第二十二天——spark(一)入门与安装

    一.概述 1.什么是spark 从官网http://spark.apache.org/可以得知: Apache Spark™ is a fast and general engine for larg ...

  5. 2017-2018-2 20155230《网络对抗技术》实验1:PC平台逆向破解(5)M

    1.直接修改程序机器指令,改变程序执行流程 2.通过构造输入参数,造成BOF攻击,改变程序执行流 3.注入Shellcode并执行 4.实验感想 注:因为截图是全屏所以右键图片在新的标签页打开观看更加 ...

  6. vs如何将工程配置,保存到属性表

    上次讲到新建一个opencv工程的配置过程,整个流程下来还是非常麻烦的.每次新建一个工程都要走这个流程的话就要疯了! 现在介绍一种将工程配置,保存到属性表的方法,那么下次新建工程时,只要添加这个属性表 ...

  7. 汇编 inc 和 dec 指令

    知识点: inc 加1指令 dec 减1指令 一.加一指令inc inc a 相当于 add a, //i++ 优点 速度比sub指令快,占用空间小 这条指令执行结果影响AF.OF.PF.SF.Z ...

  8. 汇编 LEA 指令

    知识点:  LEA指令  &与LEA  OD里修改汇编代码 一.LEA指令格式 有效地址传送指令 LEA 格式: LEA 操作数A, 操作数B 功能: 将操作数B的有效地址传送到指定的的 ...

  9. 解决Docker容器时区及时间不同步的问题

    前几天在测试应用的功能时,发现存入数据库中的数据create_time或者update_time字段总是错误,其他数据都是正常的,只有关于时间的字段是错误的. 进入linux服务器中查看,也没有任何的 ...

  10. .Net Core 分布式微服务框架 - Jimu 添加 Swagger 支持

    系列文章 .Net Core 分布式微服务框架介绍 - Jimu .Net Core 分布式微服务框架 - Jimu 添加 Swagger 支持 一.前言 最近有空就优化 Jimu (一个基于.Net ...