因为我现在还不会用这个。。。emm。。。蒟蒻。。。只看了 从来没用过。。。。所以切一道水题。。。练一下。。。

人家讲的很好  https://blog.csdn.net/u012860428/article/details/41259377

题目大意:求出满足要求的p和q,使得对于给定的x,k,,输出一组满足要求的p,q即可;

下面对于x,k进行讨论;

1、若x能被k整除,那么只要p+q=k即可;

2、如果不能被其整除,则领,那么,x=p*a+q*(a+1);相当于对于不定方程求解,易知,(a,a+1)=1,所以可以先用扩展欧几里得算法求出一组满足

ap + bq= d 的解  其中d = gcd(p,q)

然后 P = p * x/d  Q = q * x/d    因为求的是  ap + bq= d 的解  而我们要求ap + bq = x 的解    x = d * x/d  所以 求出的p 和 q 都乘上 x/d即可

即为解

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; void gcd(LL a, LL b, LL& d, LL& x, LL& y)
{
if(!b)
{
d = a;
x = ;
y = ;
}
else
{
gcd(b, a%b, d, y, x);
y -= x*(a/b);
}
} int main()
{
int T;
cin>> T;
while(T--)
{
LL x, y, d, a, b, k, c;
cin>> c >> k;
if(c % k == )
{
cout<< << " " << k- <<endl; }
else
{
a = floor(c/(double)k);
b = ceil(c/(double)k);
gcd(a, b, d, x, y);
x*=c/d;
y*=c/d;
cout<< x << " " << y <<endl; } } return ;
}

Play with Floor and Ceil UVA - 10673(拓展欧几里得)的更多相关文章

  1. UVA 10673 扩展欧几里得

    题意:给出x 和k,求解p和q使得等式x = p[x / k] + q [ x / k], 两个[x / k]分别为向下取整和向上取整 题解:扩展欧几里得 //meek///#include<b ...

  2. uva 10548 - Find the Right Changes(拓展欧几里得)

    题目链接:uva 10548 - Find the Right Changes 题目大意:给定A,B,C,求x,y,使得xA+yB=C,求有多少种解. 解题思路:拓展欧几里得,保证x,y均大于等于0, ...

  3. UVA.12169 Disgruntled Judge ( 拓展欧几里得 )

    UVA.12169 Disgruntled Judge ( 拓展欧几里得 ) 题意分析 给出T个数字,x1,x3--x2T-1.并且我们知道这x1,x2,x3,x4--x2T之间满足xi = (a * ...

  4. BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)

    污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...

  5. NOIP2012拓展欧几里得

    拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...

  6. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  7. bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得

    这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...

  8. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  9. POJ1061 青蛙的约会-拓展欧几里得

    Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...

随机推荐

  1. 1-关于单片机通信数据传输(中断发送,大小端,IEEE754浮点型格式,共用体,空闲中断,环形队列)

    补充: 程序优化 为避免普通发送和中断发送造成冲突(造成死机,复位重启),printf修改为中断发送 写这篇文章的目的呢,如题目所言,我承认自己是一个程序猿.....应该说很多很多学单片机的对于... ...

  2. MVC的BundleConfig应用

    1.MVC可以通过BundleConfig类来配置css和js的统一引用,分别通过StyleBundle和ScriptBundle来创建. 2.可以在母版页中统一加载设置在BundleConfig.c ...

  3. pip安装python包出错:Could not find a version that satisfies the requirement skimage (from versions: )

    今天用pip安装skimage时报错: 这是因为网络的问题,需要使用国内的镜像源来加速,比如豆瓣源 命令改为: pip install scikit-image -i http://pypi.doub ...

  4. 20155227《网络对抗》Exp8 Web基础

    20155227<网络对抗>Exp8 Web基础 实验内容 (1)Web前端HTML (2)Web前端javascipt (3)Web后端:MySQL基础:正常安装.启动MySQL,建库. ...

  5. 2017-2018-2 20155230《网络对抗技术》实验9:Web安全基础

    实践过程记录 下载wegot并配置好java环境后 输入java -jar webgoat-container-7.0-SNAPSHOT-war-exec.jar 在浏览器输入localhost:80 ...

  6. [CF1060F]Shrinking Tree[树dp+组合计数]

    题意 你有一棵 \(n\) 个点的树,每次会随机选择树上的一条边,将两个端点 \(u,v\) 合并,新编号随机为 \(u,v\).问最后保留的编号分别为 \(1\) 到 \(n\) 的概率. \(n\ ...

  7. 记一次Spring的aop代理Mybatis的DAO所遇到的问题

    由来 项目中需要实现某个订单的状态改变后然后推送给第三方的功能,由于更改状态的项目和推送的项目不是同一个项目,所以为了不改变原项目的代码,我们考虑用spring的aop来实现. 项目用的是spring ...

  8. FME Cloud 账号申请流程

    第一步,访问SAFE的FME Cloud注册页,官网明确表态,如果你是一个新的FME Cloud用户,你可以免费获得一个初级版.地址:https://console.fmecloud.safe.com ...

  9. AHD/TVI/CVI/CVBS/IP

    1.CVBS是最早的模拟摄像机,现在看来效果差. 2.AHD   TVI   CVI都是模拟摄像机的升级版,俗称同轴,三种名称只是用的方案系统不一样而已,相比模拟的效果清晰,和模拟的外观都是一样的bn ...

  10. python代码实现经典排序算法

    排序算法在程序中有至关重要的作用, 不同算法的时间复杂度和空间复杂度都有所区别, 这影响着程序运行的效率和资源占用的情况, 经常对一些算法多加练习, 强化吸收, 可以提高对算法的理解, 进而运用到实践 ...