FunDA(16)- 示范:整合并行运算 - total parallelism solution
在对上两篇讨论中我们介绍了并行运算的两种体现方式:并行构建数据源及并行运算用户自定义函数。我们分别对这两部分进行了示范。本篇我准备示范把这两种情况集成一体的并行运算模式。这次介绍的数据源并行构建方式也与前面描述的有所不同:在前面讨论里我们预知需要从三个独立流来并行构建数据源。但如果我们有一个不知长度的数据流,它的每个元素代表不同的数据流,应该如何处理。我们知道在AQMRPT表里有从1999年到2xxx年的空气质量测量数据,我们可以试着并行把按年份生成的数据流构建成一个数据源。直接使用上期示范中的铺垫代码包括NORMAQM表初始化和从STATES和COUNTIES里用名称搜索对应id的函数:
val db = Database.forConfig("h2db") //drop original table schema
val futVectorTables = db.run(MTable.getTables) val futDropTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.drop)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} dropped successfully! ")
case Failure(e) => println(s"Failed to drop Table ${NORMAQMQuery.baseTableRow.tableName}, it may not exist! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf) //create new table to refine AQMRawTable
val actionCreateTable = Models.NORMAQMQuery.schema.create
val futCreateTable = db.run(actionCreateTable).andThen {
case Success(_) => println("Table created successfully!")
case Failure(e) => println(s"Table may exist already! Error: ${e.getMessage}")
}
//would carry on even fail to create table
Await.ready(futCreateTable,Duration.Inf) //truncate data, only available in slick 3.2.1
val futTruncateTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.truncate)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} truncated successfully!")
case Failure(e) => println(s"Failed to truncate Table ${NORMAQMQuery.baseTableRow.tableName}! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf) //a conceived task for the purpose of resource consumption
//getting id with corresponding name from STATES table
def getStateID(state: String): Int = {
//create a stream for state id with state name
implicit def toState(row: StateTable#TableElementType) = StateModel(row.id,row.name)
val stateLoader = FDAViewLoader(slick.jdbc.H2Profile)(toState _)
val stateSeq = stateLoader.fda_typedRows(StateQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val stateStream = fda_staticSource(stateSeq)()
var id = -
def getid: FDAUserTask[FDAROW] = row => {
row match {
case StateModel(stid,stname) => //target row type
if (stname.contains(state)) {
id = stid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
stateStream.appendTask(getid).startRun
id
}
//another conceived task for the purpose of resource consumption
//getting id with corresponding names from COUNTIES table
def getCountyID(state: String, county: String): Int = {
//create a stream for county id with state name and county name
implicit def toCounty(row: CountyTable#TableElementType) = CountyModel(row.id,row.name)
val countyLoader = FDAViewLoader(slick.jdbc.H2Profile)(toCounty _)
val countySeq = countyLoader.fda_typedRows(CountyQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val countyStream = fda_staticSource(countySeq)()
var id = -
def getid: FDAUserTask[FDAROW] = row => {
row match {
case CountyModel(cid,cname) => //target row type
if (cname.contains(state) && cname.contains(county)) {
id = cid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
countyStream.appendTask(getid).startRun
id
}
以及两个用户自定义函数:
//process input row and produce action row to insert into NORMAQM
def getIdsThenInsertAction: FDAUserTask[FDAROW] = row => {
row match {
case aqm: AQMRPTModel =>
if (aqm.valid) {
val stateId = getStateID(aqm.state)
val countyId = getCountyID(aqm.state,aqm.county)
val action = NORMAQMQuery += NORMAQMModel(,aqm.mid, stateId, countyId, aqm.year,aqm.value,aqm.total)
fda_next(FDAActionRow(action))
}
else fda_skip
case _ => fda_skip
}
}
//runner for the action rows
val runner = FDAActionRunner(slick.jdbc.H2Profile)
def runInsertAction: FDAUserTask[FDAROW] = row =>
row match {
case FDAActionRow(action) =>
runner.fda_execAction(action)(db)
fda_skip
case _ => fda_skip
}
跟着是本篇新增代码,我们先构建一个所有年份的流:
//create parallel sources
//get a stream of years
val qryYears = AQMRPTQuery.map(_.year).distinct
case class Years(year: Int) extends FDAROW implicit def toYears(y: Int) = Years(y) val yearViewLoader = FDAViewLoader(slick.jdbc.H2Profile)(toYears _)
val yearSeq = yearViewLoader.fda_typedRows(qryYears.result)(db).toSeq
val yearStream = fda_staticSource(yearSeq)()
下面是一个按年份从AQMRPT表读取数据的函数:
//strong row type
implicit def toAQMRPT(row: AQMRPTTable#TableElementType) =
AQMRPTModel(row.rid, row.mid, row.state, row.county, row.year, row.value, row.total, row.valid) //shared stream loader when operate in parallel mode
val AQMRPTLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toAQMRPT _) //loading rows with year yr
def loadRowsInYear(yr: Int) = {
//a new query
val query = AQMRPTQuery.filter(row => row.year === yr)
//reuse same loader
AQMRPTLoader.fda_typedStream(query.result)(db)(, )()
}
我们可以预见多个loadRowsInYear函数实例会共享统一的FDAStreamLoader AQMRPTLoader。用户自定义数据读取函数类型是FDASourceLoader。下面是FDASourceLoader示范代码:
//loading rows by year
def loadRowsByYear: FDASourceLoader = row => {
row match {
case Years(y) => loadRowsInYear(y) //produce stream of the year
case _ => fda_appendRow(FDANullRow)
} }
我们用toParSource构建一个并行数据源:
//get parallel source constructor
val parSource = yearStream.toParSource(loadRowsByYear)
用fda_par_source来把并行数据源转换成统一数据流:
//produce a stream from parallel sources
val source = fda_par_source(parSource)()
source是个FDAPipeLine,可以直接运算:source.startRun,也可以在后面挂上多个环节。下面我们把其它两个用户自定义函数转成并行运算函数后接到source后面:
//the following is a process of composition of stream combinators
//get parallel source constructor
val parSource = yearStream.toParSource(loadRowsByYear) //implicit val strategy = Strategy.fromCachedDaemonPool("cachedPool")
//produce a stream from parallel sources
val source = fda_par_source(parSource)()
//turn getIdsThenInsertAction into parallel task
val parTasks = source.toPar(getIdsThenInsertAction)
//runPar to produce a new stream
val actionStream =fda_runPar(parTasks)()
//turn runInsertAction into parallel task
val parRun = actionStream.toPar(runInsertAction)
//runPar and carry out by startRun
fda_runPar(parRun)().startRun
下面是本次示范的完整源代码:
import slick.jdbc.meta._
import com.bayakala.funda._
import api._
import scala.language.implicitConversions
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._
import scala.concurrent.{Await, Future}
import scala.util.{Failure, Success}
import slick.jdbc.H2Profile.api._
import Models._
import fs2.Strategy object ParallelExecution extends App { val db = Database.forConfig("h2db") //drop original table schema
val futVectorTables = db.run(MTable.getTables) val futDropTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.drop)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} dropped successfully! ")
case Failure(e) => println(s"Failed to drop Table ${NORMAQMQuery.baseTableRow.tableName}, it may not exist! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf) //create new table to refine AQMRawTable
val actionCreateTable = Models.NORMAQMQuery.schema.create
val futCreateTable = db.run(actionCreateTable).andThen {
case Success(_) => println("Table created successfully!")
case Failure(e) => println(s"Table may exist already! Error: ${e.getMessage}")
}
//would carry on even fail to create table
Await.ready(futCreateTable,Duration.Inf) //truncate data, only available in slick 3.2.1
val futTruncateTable = futVectorTables.flatMap{ tables => {
val tableNames = tables.map(t => t.name.name)
if (tableNames.contains(NORMAQMQuery.baseTableRow.tableName))
db.run(NORMAQMQuery.schema.truncate)
else Future()
}
}.andThen {
case Success(_) => println(s"Table ${NORMAQMQuery.baseTableRow.tableName} truncated successfully!")
case Failure(e) => println(s"Failed to truncate Table ${NORMAQMQuery.baseTableRow.tableName}! Error: ${e.getMessage}")
}
Await.ready(futDropTable,Duration.Inf) //a conceived task for the purpose of resource consumption
//getting id with corresponding name from STATES table
def getStateID(state: String): Int = {
//create a stream for state id with state name
implicit def toState(row: StateTable#TableElementType) = StateModel(row.id,row.name)
val stateLoader = FDAViewLoader(slick.jdbc.H2Profile)(toState _)
val stateSeq = stateLoader.fda_typedRows(StateQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val stateStream = fda_staticSource(stateSeq)()
var id = -
def getid: FDAUserTask[FDAROW] = row => {
row match {
case StateModel(stid,stname) => //target row type
if (stname.contains(state)) {
id = stid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
stateStream.appendTask(getid).startRun
id
}
//another conceived task for the purpose of resource consumption
//getting id with corresponding names from COUNTIES table
def getCountyID(state: String, county: String): Int = {
//create a stream for county id with state name and county name
implicit def toCounty(row: CountyTable#TableElementType) = CountyModel(row.id,row.name)
val countyLoader = FDAViewLoader(slick.jdbc.H2Profile)(toCounty _)
val countySeq = countyLoader.fda_typedRows(CountyQuery.result)(db).toSeq
//constructed a Stream[Task,String]
val countyStream = fda_staticSource(countySeq)()
var id = -
def getid: FDAUserTask[FDAROW] = row => {
row match {
case CountyModel(cid,cname) => //target row type
if (cname.contains(state) && cname.contains(county)) {
id = cid
fda_break //exit
}
else fda_skip //take next row
case _ => fda_skip
}
}
countyStream.appendTask(getid).startRun
id
} //process input row and produce action row to insert into NORMAQM
def getIdsThenInsertAction: FDAUserTask[FDAROW] = row => {
row match {
case aqm: AQMRPTModel =>
if (aqm.valid) {
val stateId = getStateID(aqm.state)
val countyId = getCountyID(aqm.state,aqm.county)
val action = NORMAQMQuery += NORMAQMModel(,aqm.mid, stateId, countyId, aqm.year,aqm.value,aqm.total)
fda_next(FDAActionRow(action))
}
else fda_skip
case _ => fda_skip
}
}
//runner for the action rows
val runner = FDAActionRunner(slick.jdbc.H2Profile)
def runInsertAction: FDAUserTask[FDAROW] = row =>
row match {
case FDAActionRow(action) =>
runner.fda_execAction(action)(db)
fda_skip
case _ => fda_skip
} //create parallel sources
//get a stream of years
val qryYears = AQMRPTQuery.map(_.year).distinct
case class Years(year: Int) extends FDAROW implicit def toYears(y: Int) = Years(y) val yearViewLoader = FDAViewLoader(slick.jdbc.H2Profile)(toYears _)
val yearSeq = yearViewLoader.fda_typedRows(qryYears.result)(db).toSeq
val yearStream = fda_staticSource(yearSeq)() //strong row type
implicit def toAQMRPT(row: AQMRPTTable#TableElementType) =
AQMRPTModel(row.rid, row.mid, row.state, row.county, row.year, row.value, row.total, row.valid) //shared stream loader when operate in parallel mode
val AQMRPTLoader = FDAStreamLoader(slick.jdbc.H2Profile)(toAQMRPT _) //loading rows with year yr
def loadRowsInYear(yr: Int) = {
//a new query
val query = AQMRPTQuery.filter(row => row.year === yr)
//reuse same loader
AQMRPTLoader.fda_typedStream(query.result)(db)(, )()
} //loading rows by year
def loadRowsByYear: FDASourceLoader = row => {
row match {
case Years(y) => loadRowsInYear(y) //produce stream of the year
case _ => fda_appendRow(FDANullRow)
} } //start counter
val cnt_start = System.currentTimeMillis() def showRecord: FDAUserTask[FDAROW] = row => {
row match {
case Years(y) => println(y); fda_skip
case aqm: AQMRPTModel =>
println(s"${aqm.year} $aqm")
fda_skip
case FDAActionRow(action) =>
println(s"${action}")
fda_skip
case _ => fda_skip
}
} //the following is a process of composition of stream combinators
//get parallel source constructor
val parSource = yearStream.toParSource(loadRowsByYear) //implicit val strategy = Strategy.fromCachedDaemonPool("cachedPool")
//produce a stream from parallel sources
val source = fda_par_source(parSource)()
//turn getIdsThenInsertAction into parallel task
val parTasks = source.toPar(getIdsThenInsertAction)
//runPar to produce a new stream
val actionStream =fda_runPar(parTasks)()
//turn runInsertAction into parallel task
val parRun = actionStream.toPar(runInsertAction)
//runPar and carry out by startRun
fda_runPar(parRun)().startRun println(s"processing 219400 rows parallelly in ${(System.currentTimeMillis - cnt_start)/1000} seconds") }
FunDA(16)- 示范:整合并行运算 - total parallelism solution的更多相关文章
- FunDA(14)- 示范:并行运算,并行数据库读取 - parallel data loading
FunDA的并行数据库读取功能是指在多个线程中同时对多个独立的数据源进行读取.这些独立的数据源可以是在不同服务器上的数据库表,又或者把一个数据库表分成几个独立部分形成的独立数据源.当然,并行读取的最终 ...
- java JDK8 学习笔记——第16章 整合数据库
第十六章 整合数据库 16.1 JDBC入门 16.1.1 JDBC简介 1.JDBC是java联机数据库的标准规范.它定义了一组标准类与接口,标准API中的接口会有数据库厂商操作,称为JDBC驱动程 ...
- SpringBoot学习笔记(16)----SpringBoot整合Swagger2
Swagger 是一个规范和完整的框架,用于生成,描述,调用和可视化RESTful风格的web服务 http://swagger.io Springfox的前身是swagger-springmvc,是 ...
- spring 5.x 系列第16篇 —— 整合dubbo (代码配置方式)
文章目录 一. 项目结构说明 二.项目依赖 三.公共模块(dubbo-ano-common) 四. 服务提供者(dubbo-ano-provider) 4.1 提供方配置 4.2 使用注解@Servi ...
- FunDA(11)- 数据库操作的并行运算:Parallel data processing
FunDA最重要的设计目标之一就是能够实现数据库操作的并行运算.我们先重温一下fs2是如何实现并行运算的.我们用interleave.merge.either这几种方式来同时处理两个Stream里的元 ...
- Total Commander 8.52 Beta 1
Total Commander 8.52 Beta 1http://www.ghisler.com/852_b1.php 10.08.15 Release Total Commander 8.52 b ...
- FunDA(0)- Functional Data Access accessible to all
大数据.多核CPU驱动了函数式编程模式的兴起.因为函数式编程更适合多线程.复杂.安全的大型软件编程.但是,对许多有应用软件开发经验的编程者来说,函数式编程模式是一种全新的.甚至抽象的概念,可能需要很长 ...
- mybatis系列-16-spring和mybatis整合
16.1 整合思路 需要spring通过单例方式管理SqlSessionFactory. spring和mybatis整合生成代理对象,使用SqlSessionFactory创建SqlSess ...
- ThinkPHP与EasyUI整合之三(searchbox):在datagrid中查询指定记录
在datagrid中toolbar添加searchbox查询框,根据列范围查询数据,先看效果图: 1. searchbox采用easyui的Demo例子,再加以js扩展,根据datagrid中的列数据 ...
随机推荐
- 【NIFI】 Apache NiFI 之 ExecuteScript处理(一)
本例介绍NiFI ExecuteScript处理器的使用,使用的脚本引擎ECMScript FlowFile I / O简介 NiFi中的流文件由两个主要组件构成,即属性和内容.属性是关于内容/流文件 ...
- 如何将frm文件导入MySql数据库
只要在mysql的安装文件中找到data文件夹,然后在里面建立一个文件夹,比如test.这个test其实就对应着数据库的名称,所以,你想要起什么样的数据库名称就把文件夹起什么名字. 然后把.frm文件 ...
- yii2自定义json格式success,error跳转
/** * ---------------------------------------------- * 操作成功跳转的快捷方法 * @access protected * @param stri ...
- vueJs的简单入门以及基础语法
1-1基本数据绑定 <div id="app"> {{ msg }} </div> //script new Vue({ el:"#app&quo ...
- java的Scanner获取输入内容
//导入 scanner的包 import java.util.Scanner; Scanner scanner = new Scanner(System.in); System.out.printl ...
- javase jdk 环境变量 涵义
jdk环境变量配置:path:jdk安装所在目录下的bin路径-->因为环境变量path下放置的是操作系统执行的.exe文件,jdk中bin中放的是可执行的.exe文件,所以要把这个路径放置到p ...
- mysql 入门 jdbc
在java程序中连接mysql,先要到mysql的网站上面去下载驱动,并且安装,默认安装在c盘(我的都是默认安装,目录为C:\Program Files\MySQL\MySQL Connector J ...
- base_expr +: width_expr
在Verilog-1995中,可以选择向量的任一位输出,也可以选择向量的连续几位输出,不过此时连续几位的始 末数值的index需要是常量.而在Verilog-2001中,可以用变量作为index,进行 ...
- 12-简单认识下margin
margin margin:外边距的意思.表示边框到最近盒子的距离. /*表示四个方向的外边距离为20px*/ margin: 20px; /*表示盒子向下移动了30px*/ margin-top: ...
- 1.8.3suspend与resume方法的缺点--不同步
package com.cky.bean; /** * Created by edison on 2017/12/3. */ public class MyObject { private Strin ...