题目大意:给定 \(N\) 个人围成一个圈,每隔 \(M\) 个人杀一个,求最后活着的人的编号。

题解:环会涉及模运算,所以先将 \(1 \rightarrow N\) 映射为 \(0 \rightarrow N-1\),且报数从 \(0\) 开始,即:报数到 \(m-1\) 的人会被杀掉。假设已知 \(N-1\) 人时剩下的人的编号为 \(x\),如何求得 \(N\) 个人时活着的人的编号是问题的关键。现在逆向考虑问题,即:游戏第一次杀人后的子问题和原问题之间的关系。假设第一次报数时,编号为 \(k-1\) 的人被杀,则第 \(k\) 个人到第 \(k-2\) 个人组成的新环恰好构成了一个 \(N-1\) 个人的子问题,且 \(k \rightarrow 0,k-2 \rightarrow n-2\)。可知,\(f[i]=(f[i-1]+k)\% i\),其中 \(k=m\% n\) 。因此,最后的递推公式为:\(f[i]=(f[i-1]+m)\% i,f[1]=0\)。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e6+10; int n,m,f[maxn]; void solve(){
f[1]=0;
for(int i=2;i<=n;i++)f[i]=(f[i-1]+m)%i;
printf("%d\n",f[n]+1);
} int main(){
scanf("%d%d",&n,&m);
solve();
return 0;
}

【51nod1073】约瑟夫环1的更多相关文章

  1. Java实现约瑟夫环

    什么是约瑟夫环呢? 约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个 ...

  2. poj 3517 约瑟夫环

    最简单的约瑟夫环,虽然感觉永远不会考约瑟夫环,但数学正好刷到这部分,跳过去的话很难过 直接粘别人分析了 约瑟夫问题: 用数学方法解的时候需要注意应当从0开始编号,因为取余会等到0解. 实质是一个递推, ...

  3. C++ 约瑟夫环

    约瑟夫环: 已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去,直到圆桌周 ...

  4. 用pl/sql游标实现约瑟夫环

    什么是约瑟夫环: 约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为1的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数, ...

  5. 51nod 1073 约瑟夫环

    题目链接 先说一下什么是约瑟夫环,转自:传送门 关于约瑟夫环问题,无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大( ...

  6. 通过例子进阶学习C++(七)CMake项目通过模板库实现约瑟夫环

    本文是通过例子学习C++的第七篇,通过这个例子可以快速入门c++相关的语法. 1.问题描述 回顾一下约瑟夫环问题:n 个人围坐在一个圆桌周围,现在从第 s 个人开始报数,数到第 m 个人,让他出局:然 ...

  7. php解决约瑟夫环

    今天偶遇一道算法题 "约瑟夫环"是一个数学的应用问题:一群猴子排成一圈,按1,2,-,n依次编号.然后从第1只开始数,数到第m只,把它踢出圈,从它后面再开始数, 再数到第m只,在把 ...

  8. POJ-2886 Who Gets the Most Candies?---线段树+约瑟夫环

    题目链接: https://cn.vjudge.net/problem/POJ-2886 题目大意: N个人围成一圈第一个人跳出圈后会告诉你下一个谁跳出来跳出来的人(如果他手上拿的数为正数,从他左边数 ...

  9. "递归"实现"约瑟夫环","汉诺塔"

    一:约瑟夫环问题是由古罗马的史学家约瑟夫提出的,问题描述为:编号为1,2,-.n的n个人按顺时针方向围坐在一张圆桌周围,每个人持有一个密码(正整数),一开始任选一个正整数作为报数上限值m,从第一个人开 ...

随机推荐

  1. 20155226 《网络对抗》Exp 8 Web基础

    20155226 <网络对抗>Exp 8 Web基础 实践内容 1.Web前端HTML 配置环境 正常安装.启动Apache 安装:sudo apt-get install apache2 ...

  2. 20155226 《网络对抗》exp6信息搜集与漏洞扫描

    20155226 <网络对抗>exp6信息搜集与漏洞扫描 实验后回答问题 哪些组织负责DNS,IP的管理? 目前域名机构主要包括ICANN理事会和CNNIC. Internet 域名与地址 ...

  3. Luogu P1993 小 K 的农场

    其实很早以前就打好了,但一直忘记写了. 也就是差分约束的模板题. 关于差分约束,也就是用来求关于一些不等式互相约束算出最优解. 推荐一个讲的很好的博客:http://www.cppblog.com/m ...

  4. mfc CListCtrl 报表格式

    知识点: CListCtrl报表格式 CListCtrl报表格式添加列 CListCtrl报表格式添加行 CListCtrl报表格式设置单元格 一.CListCtrl报表格式 类名:SysListVi ...

  5. PowerBI开发 第三篇:报表设计技巧

    最近做了几个PowerBI报表,对PowerBI的设计有了更深的理解,对数据的塑形(sharp data),不仅可以在Data Source中实现,例如在TSQL查询脚本中,而且可以在PowerBI中 ...

  6. Flutter - 给App增加启动屏幕(Splash Screen)并且设置背景颜色

    先看一下效果图,启动图最好设置为png格式的透明图,以防图片填充不满的时候背景图会非常的煞白(Flutter 默认背景色是白色). 打开android\app\src\main\res\drawabl ...

  7. 设计模式 笔记 解释器模式 Interpreter

    //---------------------------15/04/26---------------------------- //Interpreter 解释器模式----类行为型模式 /* 1 ...

  8. 浅谈android Service和BroadCastReceiver

    1.题记 Android中的服务和windows中的服务是类似的东西,服务一般没有用户操作界面,它运行于系统中不容易被用户发觉,可以使用它开发如监控之类的程序. 广播接收者(BroadcastRece ...

  9. Jmeter(二十二)_jenkins配置gitlab插件与ant插件

    Docker部署接口自动化持续集成环境第四步,代码上传到远程仓库! 接上文:脚本上传Gitlab 服务器中的Jenkins通过Gitlab插件读取远程Git远程仓库中的代码,然后通过ant插件进行构建 ...

  10. Unity2D 面向目标方向

    在2d空间上,假设角色的自身的y轴方向为正方向,如果要让角色随时面向一个目标点. 这里假设(0,0)点为目标点 第一种: Vector3 v = Vector3.zero - transform.po ...