题目大意:给定一棵 N 个节点的无根树,点有点权,点权有正有负,求这棵树的联通块的最大权值之和是多少。

题解:设 \(dp[i]\) 表示以 i 为根节点的最大子树和,那么只要子树的 dp 值大于0,就应该算到 i 的 dp 贡献中,每次计算完后,答案取最大即可。

这里要说明的是,此题并不需要二次扫描与换根操作,因为这里统计答案是在每个点的 dp 值计算完之后,而不是整个 dfs 结束后只统计根节点的 dp 值,这就意味着在这里包含了最优解所有可能的情况。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=16010;
const int inf=0x3f3f3f3f; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} struct node{
int nxt,to;
}e[maxn<<1];
int tot=1,head[maxn];
inline void add_edge(int from,int to){
e[++tot]=node{head[from],to},head[from]=tot;
}
int n,ans=-inf,val[maxn],dp[maxn]; void read_and_parse(){
n=read();
for(int i=1;i<=n;i++)val[i]=read();
for(int i=1,x,y;i<n;i++){
x=read(),y=read();
add_edge(x,y),add_edge(y,x);
}
} void dfs(int u,int fa){
dp[u]=val[u];
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;if(v==fa)continue;
dfs(v,u);
if(dp[v]>=0)dp[u]+=dp[v];
}
ans=max(ans,dp[u]);
} void solve(){
dfs(1,0);
printf("%d\n",ans);
} int main(){
read_and_parse();
solve();
return 0;
}

【洛谷P1122】最大子树和的更多相关文章

  1. 洛谷P1122 最大子树和

    P1122 最大子树和 题目提供者该用户不存在 标签动态规划树形结构 难度普及/提高- 通过/提交54/100 提交该题 讨论 题解 记录 题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在 ...

  2. 洛谷 P1122 最大子树和

    P1122 最大子树和 题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的 ...

  3. 洛谷——P1122 最大子树和

    P1122 最大子树和 树形DP,$f[u]$表示以u为根的子树的最大美丽指数 $f[u]+=max(0,f[v])$ 树形DP的基本结构,先搜再DP,这题感觉有点儿贪心的性质,选就要选美丽值> ...

  4. 洛谷—— P1122 最大子树和

    https://www.luogu.org/problem/show?pid=1122 题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课 ...

  5. 洛谷P1122 最大子树和 (树状dp)

    题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...

  6. 洛谷P1122 最大子树和 树形DP初步

    小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明就向老师提 ...

  7. 洛谷P1122最大子树和题解

    题目 一道比较好想的树形\(DP\) 完全可以用树形DP的基本思路,递归,然后取最优的方法. \(Code\) #include <iostream> #include <cstri ...

  8. [洛谷P1122][题解]最大子树和

    这是一道还算简单的树型dp. 转移方程:f[i]=max(f[j],0) 其中i为任意非叶节点,j为i的一棵子树,而每棵子树都有选或不选两种选择 具体看代码: #include<bits/std ...

  9. AC日记——最大子树和 洛谷 P1122

    题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...

随机推荐

  1. 20155209林虹宇逆向及Bof基础实验报告

    20155209林虹宇逆向及Bof基础实验报告 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符 ...

  2. 连接到win2003的远程桌面,客户端要如何操作

    第一步:命令行执行mstsc 第二步:处输入开启了远程桌面功能的计算机IP地址.

  3. 【php增删改查实例】第八节 - 部门管理模块(编写PHP程序)

    首先,在同级目录新建一个query.php文件: 接着,去刷新页面,打开F12,NetWork,看看当前的请求能不能走到对应的php文件? 这就说明datagrid确实能够访问到query.php 只 ...

  4. 汇编 (NOT)按位取反指令

    知识点:  (NOT)按位取反指令  逻辑取反(!)  按位取反(~)  SETZ(SETE) 取ZF位值保存  SETNZ(SETNE)将ZF位值取反后保存 一.逻辑取反(!) !111 ...

  5. 页面弹出全屏浮层或遮罩时,禁止底层body滚动

    · 解决方法 针对弹出的浮层的 touchmove事件,添加阻止浏览器默认行为. $('.mask-wrapper').on('touchmove', function (event) { // 监听 ...

  6. Spring的单例模式底层实现学习笔记

    单例模式也属于创建型模式,所谓单例,顾名思义,所指的就是单个实例,也就是说要保证一个类仅有一个实例.单例模式有以下的特点:①单例类只能有一个实例②单例类必须自己创建自己的唯一实例③单例类必须给所有其他 ...

  7. 【亲测有效】Nodepad++/Sublime Text3中Python脚本运行出现语法错误:IndentationError: unindent does not match any outer indentation level解决策略

    我在开发游戏的时候,发现一个python脚本,本来都运行好好的,然后写了几行代码,而且也都确保每行都对齐了,但是运行的时候,却出现语法错误: IndentationError: unindent do ...

  8. linux使用curl上传文件并且同时携带其它传递参数

    一般使用linux原生态的命令curl上传文件时命令如下 假如要上传文件是myfile.txt curl -F "file_name=@myfile.txt" -X POST &q ...

  9. 第四次Scrum meeting

    第四次Scrum meeting 会议内容: 沟通方面:与学霸在线组.学霸手机客户端组进行沟通,了解现阶段各个小组的进度,并针对接口结构方面进行调整 前后端:我们完全可以是不需要界面的,但是为了用户的 ...

  10. Teechart使用记录

    一.      Chart 1.1 Series 在该界面可以进行曲线的添加.删除.修改 1.2 General 在该界面 Margins 可以设置整个坐标系外边距. 在这里可是设置放大功能. All ...