题目描述

在一个 \(\text{n} \times \text{n}\) 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示。棋盘上某些方格设置了障碍,骑士不得进入。

对于给定的 \(\text{n} \times \text{n}\) 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击。

输入格式

第一行有两个正整数 \(\text{n}\) 和 \(\text{m}\) \(( 1 \leq n \leq 200, 0 \leq m \leq n^2 - 1 )\) 分别表示棋盘的大小和障碍数。

输出格式

输出计算出的共存骑士数。

样例

样例输入

3 2
1 1
3 3

样例输出

5

数据范围与提示

\(1\leq n\leq 200\)

\(0 \leq m \leq n^2-1\)

题解

一个点与它能攻击到的点连边

变成了一个二分图

那么题目要求的就是二分图最大独立集

最大独立集 \(=\) 点数 \(-\) 最大流

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200+10,inf=0x3f3f3f3f;
int n,m,tot,e=1,col[MAXN][MAXN],dr[8][2]={{-1,-2},{-2,-1},{-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2}},s,t,to[MAXN*MAXN<<4],nex[MAXN*MAXN<<4],beg[MAXN*MAXN],cap[MAXN*MAXN<<4],cur[MAXN*MAXN],vis[MAXN*MAXN],level[MAXN*MAXN],clk;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int id(int x,int y)
{
return (x-1)*n+y;
}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(!level[to[i]]&&cap[i])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(n);read(m);tot=n*n;
for(register int i=1;i<=n;++i)
for(register int j=1;j<=n;++j)
if((i+j)&1)col[i][j]=1;
else col[i][j]=2;
for(register int i=1,x,y;i<=m;++i)read(x),read(y),col[x][y]=0,tot--;
s=n*n+1,t=s+1;
for(register int i=1;i<=n;++i)
for(register int j=1;j<=n;++j)
if(!col[i][j])continue;
else if(col[i][j]==2)
{
insert(s,id(i,j),1);
for(register int k=0;k<8;++k)
{
int dx=i+dr[k][0],dy=j+dr[k][1];
if(dx<0||dx>n||dy<0|dy>n||col[dx][dy]!=1)continue;
insert(id(i,j),id(dx,dy),1);
}
}
else insert(id(i,j),t,1);
write(tot-Dinic(),'\n');
return 0;
}

【刷题】LOJ 6226 「网络流 24 题」骑士共存问题的更多相关文章

  1. loj #6226. 「网络流 24 题」骑士共存问题

    #6226. 「网络流 24 题」骑士共存问题   题目描述 在一个 n×n\text{n} \times \text{n}n×n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上 ...

  2. 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题

    题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...

  3. [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划

    [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...

  4. [LOJ#6002]「网络流 24 题」最小路径覆盖

    [LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是  ...

  5. loj #6014. 「网络流 24 题」最长 k 可重区间集

    #6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...

  6. loj #6013. 「网络流 24 题」负载平衡

    #6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...

  7. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

  8. loj #6121. 「网络流 24 题」孤岛营救问题

    #6121. 「网络流 24 题」孤岛营救问题   题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...

  9. [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流

    #6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

随机推荐

  1. 再谈STM32的CAN过滤器-bxCAN的过滤器的4种工作模式以及使用方法总结

    1. 前言 bxCAN是STM32系列最稳定的IP核之一,无论有哪个新型号出来,这个IP核基本未变,可见这个IP核的设计是相当成熟的.本文所讲述的内容属于这个IP核的一部分,掌握了本文所讲内容,就可以 ...

  2. 怎样让oracle实验本在不做实验时性能提升——win7下举例

    怎样让oracle实验本在不做实验时性能提升--win7下举例 型号:ThinkPad E431 系统:WIN7 实验使用的笔记本不使用数据库时.建议将oracle关闭,使其释放占用的资源. orac ...

  3. Scala--文件和正则表达式

    一.读取行 import scala.io.Source val source = Source.fromFile("D:\\documents\\Scala\\MyDemo\\t.txt& ...

  4. Ubuntu14.04配置gcc4.4.4+Qt4.8.4交叉编译环境

    安装32位程序运行支持 sudo apt-get install lib32stdc++6 lib32z1 lib32ncurses5 lib32bz2-1.0 可能报错: lib32stdc++6 ...

  5. EZ 2018 04 21 NOIP2018 模拟赛(九)

    终于停止了掉Rating的浪潮! 猥琐的链接 这次200分才Rank10,而且很多人并列 庆幸T2最后20分钟发现期望的算法打错了,然后拿到了50pts,250收场 T1 水题*1 这道题不仅做过,而 ...

  6. 微信小程序获取客户端系统信息

    微信小程序中有个API: wx.getSystemInfo() 可以获取系统的信息 wx.getSystemInfoSync()===>同步获取系统信息 wx.getSyatemInfo({ s ...

  7. Linux下安装maven(mvn命令)

    Maven(mvn)是基于项目对象模型(POM project object model),可以通过一小段描述信息(配置)来管理项目的构建,报告和文档的软件项目管理工具(百度百科) 简单理解为一个打包 ...

  8. Unity 3D 简易制作摄像机围绕物体随鼠标旋转效果

    Unity 3D 简易制作摄像机围绕物体随鼠标旋转效果 梗概: 一. 摄像机围绕目标物体旋转, 即摄像机离目标物体有一定的距离且旋转轴心为该物体的位置. 二. 当目标物体被障碍物挡住后, 需要将摄像机 ...

  9. Codeforces Round #546 (Div. 2) E - Nastya Hasn't Written a Legend

    这题是一个贼搞人的线段树 线段树维护的是 区间和a[i - j] 首先对于update的位置可以二分查找 其次update时候的lazy比较技巧 比如更新的是 l-r段,增加的是c 那么这段的值为: ...

  10. LeetCode-765.情侣牵手

    N 对情侣坐在连续排列的 2N 个座位上,想要牵到对方的手. 计算最少交换座位的次数,以便每对情侣可以并肩坐在一起. 一次交换可选择任意两人,让他们站起来交换座位. 人和座位用 0 到 2N-1 的整 ...