Description

  

​   题目链接

  

  

  

Description

  

​   好题。题意是维护一个初始值,交替加减一段时间,有上界\(m\)和下界0(不能超过这两条界限),问对于某一种初始值,在某一个时刻时该值为多少?

  

​   可以把所有询问按时间排序成一列,然后用线段树区间加减、区间min、max暴力实现,然而我不会做。

  

​   实际上直接模拟即可。

  

​   如果按时间增长为横坐标,按该时间的权值为纵坐标,画出对于\([0,m]\)的每一种初始值的函数图像,我们会发现,随着时间的增长,函数曲线变得原来越少,也就是图像会不断重叠在一起。

  

​   形式化地讲,我们可以发现一个重要性质:对于一个在某一时刻触碰到上/下边界的曲线,在这个时刻之后,其函数图像将会和在这个时刻之前已触碰到上/下边界的曲线完全相同。

  

   在某一时刻时,我们称一个初始值为“归上”,当且仅当其在这个时刻及以前已经触碰到了上边界;“归下“同理。我们发现,对于任意确定时刻,”归上“的初始值都是\([y,m]\),而"归下"的初始值都是\([0,x]\)。而且随着时间推进,\(y\)单调不增,\(x\)单调不减。

  

​   既然询问已经以时间递增的顺序给出,那我们就顺序模拟时间推进,并逐一处理询问。

  

​   我们要维护的东西有三个:"归上"初始值在当前时间的具体取值\(up\)、“归下”的初始值在当前时间的具体取值\(dn\),以及从开始到现在上下移动的总和\(sum\)。

  

​   对于一个询问\((t,a)\),假设时间已经模拟到了\(t\),如果\(a\)"归上",也就是曾经碰到上边界,那么答案就是\(up\);如果其"归下",则答案就是\(dn\);否则,\(a\)从开始到现在没有碰到任何边界,所以其取值直接模拟即可,恰好为\(a+sum\)。至于”是否曾经触边“的判定,可以维护\(sum\)有史以来的最大值和最小值,加在\(a\)上判定与0或m的大小关系即可。

  

​   对于\(up\)和\(dn\)的计算,在初始时令\(dn=0\),\(up=m\),然后在时间推进的过程中不断对它们进行带边界限制的模拟上下移动,那么我们就可以保证在每一个时刻时,\(up\)和\(dn\)都是我们所定义的值。为什么?因为初始时,“归上”恰好只有\(m\),"归下"恰好只有0。而之后触碰到上/下边界的所有曲线,都必定在m/0之后触碰,也必定在m/0之后成为"归上"/“归下"。只要一触碰,其函数值就会和m/0相同。于是本质上,我们是在维护\(a=0\)和\(a=m\)在任意时刻的取值。

  

​   形象地讲,这道题就像一个非弹性形变的柱子在管道里上下移动,柱子的”长度“就代表着那一部分从未触边的初始值,而上面和下面空出来的部分,代表着上面这些取值的答案都是柱子的”上端“,下面这些初始值的答案都是柱子的“下端”。为什么会空出来呢?因为曾经被“挤”在一起了,因此这一部分初始值在以后的取值都相同了。那么\(up\)和\(dn\)其实就是柱子的上下端。

  

  

  

Code

  

#include <cstdio>
using namespace std;
const int N=100005;
int n,m,q,a[N];
int l,r,sum,summn,summx;
inline int min(int x,int y){
return x<y?x:y;
}
inline int max(int x,int y){
return x>y?x:y;
}
inline void move(int &x,int d,int tim){
x+=d*tim;
if(x>m) x=m;
if(x<0) x=0;
}
void cont(int tim,int d){
static int lasttim=0;
int delta=tim-lasttim;
lasttim=tim;
sum+=delta*d;
summn=min(summn,sum);
summx=max(summx,sum);
move(l,d,delta);
move(r,d,delta);
}
int query(int x){
if(x+summn<=0) return l;
else if(x+summx>=m) return r;
else return x+sum;
}
int main(){
scanf("%d%d",&m,&n);
for(int i=1;i<=n;i++)
scanf("%d",a+i);
scanf("%d",&q);
l=0; r=m;
sum=summx=summn=0;
int i=1,d=-1,x,y;
while(q--){
scanf("%d%d",&x,&y);
for(;i<=n&&a[i]<=x;cont(a[i++],d),d=-d);
cont(x,d);
printf("%d\n",query(y));
}
return 0;
}

【ARC082D】Sandglass的更多相关文章

  1. 【AtCoder】ARC082 F - Sandglass

    [链接]F - Sandglass [题意]给定沙漏A和B,分别装着a和X-a的沙子,开始时A在上B在下,每秒漏1,漏完不再漏.给定n,有n个时刻ai沙漏倒转.给定m个询问,每次询问给定初值a和时刻t ...

  2. 【AtCoder Regular Contest 082 F】Sandglass

    [链接]点击打开链接 [题意] 你有一个沙漏. 沙漏里面总共有X单位的沙子. 沙漏分A,B上下两个部分. 沙漏从上半部分漏沙子到下半部分. 每个时间单位漏1单位的沙子. 一开始A部分在上面.然后在r1 ...

  3. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  4. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  5. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  6. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  7. 【调侃】IOC前世今生

    前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...

  8. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

  9. Python高手之路【一】初识python

    Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...

随机推荐

  1. 前后台分离式开发(swagger)

    一.前后台分离开发(swagger) 1.安装maven 配置的maven环境变量 M2_HOME/MAVEN_HOME Path %M2_HOME%/bin 打开运行窗口:输入mvn -v,查看是否 ...

  2. JS 01 变量_数据类型_分支循环_数组

    点击直通车↓↓↓ 数据类型及数据类型的手动转换 数组 一.概念 JavaScript(JS)是一种基于对象和事件驱动.且可以与HTML标记语言混合使用的脚本语言,其编写的程序可以直接在浏览器中解释执 ...

  3. 20155207王雪纯《网络对抗》Exp4 恶意代码分析

    20155207 <网络对抗> 恶意代码分析 学习总结 实践目标 1.是监控你自己系统的运行状态,看有没有可疑的程序在运行. 2.是分析一个恶意软件,就分析Exp2或Exp3中生成后门软件 ...

  4. Exp9 Web安全基础实践

    Exp9 Web安全基础实践 基础问题回答 1.SQL注入攻击原理,如何防御? 对用户的输入进行校验,可以通过正则表达式,双"-"进行转换等. 不要使用动态拼装sql,可以使用参数 ...

  5. 20155310 Exp9 Web安全基础实践

    20155310 Exp9 Web安全基础实践 基础问题 SQL注入攻击原理,如何防御? SQL注入漏洞是指在Web应用对后台数据库查询语句处理存在的安全漏洞.也就是,在输入字符串中嵌入SQL指令,在 ...

  6. 20155320 Exp3 免杀原理与实践

    20155320 Exp3 免杀原理与实践 免杀 一般是对恶意软件做处理,让它不被杀毒软件所检测.也是渗透测试中需要使用到的技术. [基础问题回答] (1)杀软是如何检测出恶意代码的? 1.通过行为检 ...

  7. 使用Gzip压缩数据,加快页面访问速度

                 在返回的json数据量大时,启用Gzip压缩,可以提高传输效率.下面为Gzip压缩对json字符串压缩并输出到页面的代码. 一.代码 /** 向浏览器输出字符串响应数据,启用 ...

  8. 修改 input[type="radio"] 和 input[type="checkbox"] 的默认样式

    表单中,经常会使用到单选按钮和复选框,但是,input[type="radio"] 和 input[type="checkbox"] 的默认样式在不同的浏览器或 ...

  9. [CF917D]Stranger Trees[矩阵树定理+解线性方程组]

    题意 给你 \(n\) 个点的无向完全图,指定一棵树 \(S\),问有多少棵生成树和这棵树的公共边数量为 \(k\in[0,n-1]\) \(n\leq 100\) 分析 考虑矩阵树定理,把对应的树边 ...

  10. WebStorm安装

    用到的链接: WebStorm官网:https://www.jetbrains.com/webstorm 破解补丁与注册码网址:http://idea.lanyus.com/ 有条件的朋友请购买正版. ...