题目描述

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1(1,1),小轩坐在矩阵的右下角,坐标(m,n)(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。

在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。

还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用00表示),可以用一个0-1000−100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这22条路径上同学的好心程度之和最大。现在,请你帮助小渊和小轩找到这样的22条路径。

输入输出格式

输入格式:

输入文件,第一行有22个用空格隔开的整数mm和nn,表示班里有mm行nn列。

接下来的mm行是一个m \times nm×n的矩阵,矩阵中第ii行jj列的整数表示坐在第ii行jj列的学生的好心程度。每行的nn个整数之间用空格隔开。

输出格式:

输出文件共一行,包含一个整数,表示来回22条路上参与传递纸条的学生的好心程度之和的最大值。

输入输出样例

输入样例#1: 复制

3 3
0 3 9
2 8 5
5 7 0
输出样例#1: 复制

34

第一种方法:
应该很容易就想到四维dp 枚举出两封信所处位置 注意初始化细节和循环细节
#include<bits/stdc++.h>
using namespace std;
//input
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m);
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
//////////////////////////////////
#define N 50+5
#define inf 0x3f3f3f3f
int mp[N][N];
int dp[N][N][N][N];
int main()
{
int n,m;
RII(n,m);
rep(i,,n)
rep(j,,m)
RI(mp[i][j]); CLR(dp,-0x3f);
dp[][][][]=;//这两句初始化不加也能ac 因为好感度都是正数 即使出界了也都是+0 不影响结果
//dp[2][1][1][2]=mp[2][1]+mp[1][2];//这句加了的话就重复了
rep(i,,n)
rep(j,,m)
rep(s,,n)
rep(k,j+,m)//注意第二个状态量始终在第一个状态量的右边
{
dp[i][j][s][k]=max(dp[i][j][s][k],dp[i-][j][s-][k]);
dp[i][j][s][k]=max(dp[i][j][s][k],dp[i][j-][s][k-]);
dp[i][j][s][k]=max(dp[i][j][s][k],dp[i-][j][s][k-]);
dp[i][j][s][k]=max(dp[i][j][s][k],dp[i][j-][s-][k]);
dp[i][j][s][k]+=mp[i][j]+mp[s][k];
}
cout<<dp[n][m-][n-][m];
}

第二种方法:

对n4进行优化至n3

注意观察横纵坐标之和   不管是向下移动还是向右移动  横纵坐标之和都是加一!

但是发生了奇怪的问题(貌似就我发生了)  所以以后考虑最严谨方案即可 不要轻易作死!

#include<bits/stdc++.h>
using namespace std;
//input
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m);
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
//////////////////////////////////
#define N 50+5
#define inf 0x3f3f3f3f
int mp[N][N];
long long dp[*N][N][N];
int main()
{
int n,m;
RII(n,m);
rep(i,,n)
rep(j,,m)
RI(mp[i][j]); rep(i,,)
rep(q,,)
rep(w,,)
dp[i][q][w]=-;//这里改成LONGLONGMIN 反而会错 明明LONGLONGMIN更小 慎用LONGLONGMIN//最稳妥的方式是去掉这个初始化 加上dp过程中的判负条件!!! dp[][][]=;
rep(k,,n+m-)
rep(i,,m-)
rep(j,i+,m)
{
dp[k][i][j]=max(dp[k][i][j],dp[k-][i][j]);
dp[k][i][j]=max(dp[k][i][j],dp[k-][i-][j]);
dp[k][i][j]=max(dp[k][i][j],dp[k-][i][j-]);
dp[k][i][j]=max(dp[k][i][j],dp[k-][i-][j-]);
// if(dp[k][i][j]<0)continue;//不知道为什么不加这句就会错 明明初始负数为数据的指数倍 不可能填到0以上(是有可能的 三重循环疯狂增长)//最好的方法是加上这句话!!
dp[k][i][j]+=mp[k-i][i]+mp[k-j][j];
}
cout<<dp[n+m-][m-][m];
}

P1006 传纸条 多维DP的更多相关文章

  1. 洛谷 P1006 传纸条 多维DP

    传纸条详解: 蒟蒻最近接到了练习DP的通知,于是跑来试炼场看看:发现有点难(毕竟是蒟蒻吗)便去翻了翻题解,可怎么都看不懂.为什么呢?蒟蒻发现题解里都非常详细的讲了转移方程,讲了降维优化,但这题新颖之处 ...

  2. 洛谷P1006 传纸条 (棋盘dp)

    好气,在洛谷上交就过了,在caioj上交就只有40分 之前在51nod做过这道题了. https://blog.csdn.net/qq_34416123/article/details/8180902 ...

  3. P1006 传纸条(二维、三维dp)

    P1006 传纸条 输入输出样例 输入 #1 复制 3 3 0 3 9 2 8 5 5 7 0 输出 #1 复制 34 说明/提示 [限制] 对于 30% 的数据,1≤m,n≤10: 对于 100% ...

  4. 【洛谷】【动态规划(多维)】P1006 传纸条

    [题目描述:] 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸 ...

  5. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  6. [Luogu P1006]传纸条 (网格DP)

    题面 传送门:https://www.luogu.org/problemnew/show/P1006 Solution 挺显然但需要一定理解的网络(应该是那么叫吧)DP 首先有一个显然但重要的结论要发 ...

  7. 洛谷 P1006 传纸条 题解

    P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法 ...

  8. 洛谷P1006 传纸条(多维DP)

    小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们 ...

  9. P1006 传纸条 (方格取数dp)

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运 ...

随机推荐

  1. 【转】I2C总线协议

    I2C总线(Inter Integrated-Circuit)是由PHILIPS公司在上世纪80年代发明的一种电路板级串行总线标准,通过两根信号线——时钟线SCL和数据线SDA——即可完成主从机的单工 ...

  2. 51nod1462 树据结构(树链剖分+线段树)

    这题好久之前就被学长安利了...一直没写珍藏在收藏夹一个不为人知的角落233 这题怎么做...我们来数形结合,横坐标为$t_i$被加的次数(可看作时间$t$),纵坐标为$v_i$,那么$t_i$实际上 ...

  3. 位运算的一种应用 和 hiho1516过河解题报告

    初始i=s 每次:i=(i-1) & s 直到i=0 etc.11000100000100000000 10000=10001 & 1100001000=01111 & 110 ...

  4. python中的functools模块

    functools模块可以作用于所有的可以被调用的对象,包括函数 定义了__call__方法的类等 1 functools.cmp_to_key(func) 将比较函数(接受两个参数,通过比较两个参数 ...

  5. CF&&CC百套计划4 Codeforces Round #276 (Div. 1) E. Sign on Fence

    http://codeforces.com/contest/484/problem/E 题意: 给出n个数,查询最大的在区间[l,r]内,长为w的子区间的最小值 第i棵线段树表示>=i的数 维护 ...

  6. 从零开始编写自己的JavaScript框架(一)

    1. 模块的定义和加载 1.1 模块的定义 一个框架想要能支撑较大的应用,首先要考虑怎么做模块化.有了内核和模块加载系统,外围的模块就可以一个一个增加.不同的JavaScript框架,实现模块化方式各 ...

  7. spring Mvc + Maven + 拷贝插件 (十一)

    maven-antrun-plugin:可用于在项目编译打包时,把文件指定的文件拷贝到指定的位置,我们打包一般都是打包到 项目 的target 文件下; <groupId>org.apac ...

  8. NIO学习(1)-入门学习

    一.NIO概念 IO:标准IO,也既阻塞式IO NIO:非阻塞式IO 二.NIO与标准IO的IO工作方式 标准IO基于字节流和字符流进行操作 NIO是基于通道(Channel)和缓冲区(Buffer) ...

  9. 第5月第15天 php email

    1. <?php require_once "Mail.php"; $from = "luckyeggs<fuping304@163.com>" ...

  10. ViewGroup.layout(int l, int t, int r, int b)四个输入参数的含义

    ViewGroup.layout(int l, int t, int r, int b)这个方法是确定View的大小和位置的,然后将其绘制出来,里面的四个参数分别是View的四个点的坐标,他的坐标不是 ...