十分钟搞定pandas
转至:http://www.cnblogs.com/chaosimple/p/4153083.html
本文是对pandas官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook 。习惯上,我们会按下面格式引入所需要的包:
一、 创建对象
可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。
1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:
2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:
3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:
4、查看不同列的数据类型:
5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:
二、 查看数据
详情请参阅:Basics Section
1、 查看frame中头部和尾部的行:
2、 显示索引、列和底层的numpy数据:
3、 describe()函数对于数据的快速统计汇总:
4、 对数据的转置:
5、 按轴进行排序
6、 按值进行排序
三、 选择
虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc 和 .ix详情请参阅Indexing and Selecing Data 和 MultiIndex / Advanced Indexing。
l 获取
1、 选择一个单独的列,这将会返回一个Series,等同于df.A:
2、 通过[]进行选择,这将会对行进行切片
l 通过标签选择
1、 使用标签来获取一个交叉的区域
2、 通过标签来在多个轴上进行选择
3、 标签切片
4、 对于返回的对象进行维度缩减
5、 获取一个标量
6、 快速访问一个标量(与上一个方法等价)
l 通过位置选择
1、 通过传递数值进行位置选择(选择的是行)
2、 通过数值进行切片,与numpy/python中的情况类似
3、 通过指定一个位置的列表,与numpy/python中的情况类似
4、 对行进行切片
5、 对列进行切片
6、 获取特定的值
l 布尔索引
1、 使用一个单独列的值来选择数据:
2、 使用where操作来选择数据:
3、 使用isin()方法来过滤:
l 设置
1、 设置一个新的列:
2、 通过标签设置新的值:
3、 通过位置设置新的值:
4、 通过一个numpy数组设置一组新值:
上述操作结果如下:
5、 通过where操作来设置新的值:
四、 缺失值处理
在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section。
1、 reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、
2、 去掉包含缺失值的行:
3、 对缺失值进行填充:
4、 对数据进行布尔填充:
五、 相关操作
详情请参与 Basic Section On Binary Ops
l 统计(相关操作通常情况下不包括缺失值)
1、 执行描述性统计:
2、 在其他轴上进行相同的操作:
3、 对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:
l Apply
1、 对数据应用函数:
l 直方图
具体请参照:Histogramming and Discretization
l 字符串方法
Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.
六、 合并
Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section
l Concat
l Join 类似于SQL类型的合并,具体请参阅:Database style joining
l Append 将一行连接到一个DataFrame上,具体请参阅Appending:
七、 分组
对于”group by”操作,我们通常是指以下一个或多个操作步骤:
l (Splitting)按照一些规则将数据分为不同的组;
l (Applying)对于每组数据分别执行一个函数;
l (Combining)将结果组合到一个数据结构中;
详情请参阅:Grouping section
1、 分组并对每个分组执行sum函数:
2、 通过多个列进行分组形成一个层次索引,然后执行函数:
八、 Reshaping
详情请参阅 Hierarchical Indexing 和 Reshaping。
l Stack
l 数据透视表,详情请参阅:Pivot Tables.
可以从这个数据中轻松的生成数据透视表:
九、 时间序列
Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section。
1、 时区表示:
2、 时区转换:
3、 时间跨度转换:
4、 时期和时间戳之间的转换使得可以使用一些方便的算术函数。
十、 Categorical
从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introduction和API documentation。
1、 将原始的grade转换为Categorical数据类型:
2、 将Categorical类型数据重命名为更有意义的名称:
3、 对类别进行重新排序,增加缺失的类别:
4、 排序是按照Categorical的顺序进行的而不是按照字典顺序进行:
5、 对Categorical列进行排序时存在空的类别:
十一、 画图
具体文档参看:Plotting docs
对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:
十二、 导入和保存数据
l CSV,参考:Writing to a csv file
1、 写入csv文件:
2、 从csv文件中读取:
l HDF5,参考:HDFStores
1、 写入HDF5存储:
2、 从HDF5存储中读取:
l Excel,参考:MS Excel
1、 写入excel文件:
2、 从excel文件中读取:
十分钟搞定pandas的更多相关文章
- 十分钟搞定pandas内容
目录 十分钟搞定pandas 一.创建对象 二.查看数据 三.选择器 十二.导入和保存数据 参考:http://pandas.pydata.org/pandas-docs/stable/whatsne ...
- 【原】十分钟搞定pandas
http://www.cnblogs.com/chaosimple/p/4153083.html 本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译 ...
- 十分钟搞定 pandas
原文:http://pandas.pydata.org/pandas-docs/stable/10min.html 译者:ChaoSimple 校对:飞龙 官方网站上<10 Minutes to ...
- 【Python笔记】十分钟搞定pandas
本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯 ...
- 【转】十分钟搞定pandas
原文链接:http://www.cnblogs.com/chaosimple/p/4153083.html 关于pandas的入门介绍,比较全,也比较实在,特此记录~ 还有关于某同学的pandas学习 ...
- 十分钟搞定CSS选择器
在最近的web开发中是不是就会用到一些选择器,发现很多尤其是CSS3新增的不太熟悉,在此总结一下. 优先级 不同级别 1. 在属性后面使用 !important 会覆盖页面内任何位置定义的元素样式. ...
- (转)十分钟搞定CSS选择器
原文地址:http://www.cnblogs.com/dolphinX/p/3347713.html 在最近的web开发中是不是就会用到一些选择器,发现很多尤其是CSS3新增的不太熟悉,在此总结一下 ...
- 十分钟搞定微信企业帐号“echostr校验失败,请您检查是否正确解密并输出明文echostr”
问题域:在这里我们只解决密文可以正确解密,但微信验证提示“echostr校验失败,请您检查是否正确解密并输出明文echostr”的问题. 干货:没有正确验证的原因是:你给微信返回的是字符串,而微信需要 ...
- 十分钟搞定mongodb副本集
mongodb副本集配置 最近项目中用到了mongodb,由于是用mongodb来记录一些程序的日志信息和日常的统计,为了增加应用的可靠性,一直在找mongodb集群的一些资料,下面是对最近做的一个小 ...
随机推荐
- .net百度编辑器的使用
1.前端引用 <%@ Page ValidateRequest="false" Language="C#" AutoEventWireup="t ...
- 《算法》第六章部分程序 part 2
▶ 书中第六章部分程序,包括在加上自己补充的代码,B-树 ● B-树 package package01; import edu.princeton.cs.algs4.StdOut; public c ...
- python学习笔记_week10
一.多进程multiprocessing io 操作不占用cpu,计算占cpu(如1+1),上下文切换耗资源(多线程可能不如单线程快),python多线程不适合cup密集操作型的任务,适合io操作密集 ...
- srbac配置
Yii框架中安装srbac扩展方法 以前自己安装过一次srbac,遇到很多问题,虽然都解决了,可是一时偷懒,没做记录. 再次安装时,还是遇到了点麻烦,所以这一还是记下来,以备不时之需. 首先,下载sr ...
- OpenGL ES平移矩阵和旋转矩阵的左乘与右乘效果
OpenGL ES平移矩阵和旋转矩阵的左乘与右乘 在OpenGL .OpenGL ES中矩阵起着举足轻重的作用,而矩阵之间的左乘与右乘在效果上是不同的. 一.先平移后旋转 场景效果:人绕树旋转. 原理 ...
- Android悬浮窗及其拖动事件
主页面布局很简单,只有一个RelativelyLayout <?xml version="1.0" encoding="utf-8"?> <R ...
- 转载:python 的包导入
python 包 多个关系密切的模块应该组织成一个包,以便于维护和使用.这项技术能有效避免名字空间冲突.创建一个名字为包名字的文件夹并在该文件夹下创建一个__init__.py 文件就定义了一个包.你 ...
- C# 中的 ConfigurationManager类引用方法
c#添加了Configuration;后,竟然找不到 ConfigurationManager 这个类,后来才发现:虽然引用了using System.Configuration;这个包,但是还是不行 ...
- ISO7816之管脚定义
卡座的管脚定义 如果使用示波器或者逻辑分析仪来观察 连接C3.C5.C7 小技巧当C3为3.57MHZ时候,可以使用波特率为9600的串口来监听.
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...