[环境配置]Ubuntu 16.04 源码编译安装OpenCV-3.2.0+OpenCV_contrib-3.2.0及产生的问题
1.OpenCV-3.2.0+OpenCV_contrib-3.2.0编译安装过程
1)下载官方要求的依赖包
- GCC 4.4.x or later
- CMake 2.6 or higher
- Git
- GTK+2.x or higher, including headers (libgtk2.0-dev) # 控制opencv GUI
- pkg-config
- Python 2.6 or later and Numpy 1.5 or later with developer packages (python-dev, python-numpy)
- ffmpeg or libav development packages: libavcodec-dev, libavformat-dev, libswscale-dev
- [optional] libtbb2 libtbb-dev
- [optional] libdc1394 2.x
- [optional] libjpeg-dev, libpng-dev, libtiff-dev, libjasper-dev, libdc1394-22-dev
$ sudo apt-get install build-essential
$ sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
$ sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev # 处理图像所需的包
$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev liblapacke-dev
$ sudo apt-get install libxvidcore-dev libx264-dev # 处理视频所需的包
$ sudo apt-get install libatlas-base-dev gfortran # 优化opencv功能
$ sudo apt-get install ffmpeg
2)下载OpenCV-3.2.0+OpenCV_contrib-3.2.0
$ cd /the_path_you_would_install
$ wget https://github.com/opencv/opencv/archive/3.2.0.zip
$ wget https://github.com/opencv/opencv_contrib/archive/3.2.0.zip
直接右键解压,然后进行安装。
$ cd opencv-3.2.0
$ mkdir build
$ cd build
$ cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-3.2.0/modules/ ..
$ make -j8 #如果线程足够多可以使用 make -j12
$ sudo make install
第四行最后的 .. 一定不能忘记,因为我们是在/build文件夹中编译上层文件夹的程序。
$ sudo ldconfig -v
$ pkg-config --modversion opencv #确认OpenCV的版本,如果显示3.2.0说明安装完成
2.遇到的问题及解决方案
1)关于opencv_lapack.h缺失的问题
问题如下
In file included from /home/yao/opencv-3.2.0/modules/core/src/hal_internal.cpp:49:0:
/home/yao/opencv-3.2.0/build/opencv_lapack.h:2:45: fatal error: LAPACKE_H_PATH-NOTFOUND/lapacke.h: No such file or directory
compilation terminated.
modules/core/CMakeFiles/opencv_core.dir/build.make:114: recipe for target 'modules/core/CMakeFiles/opencv_core.dir/src/hal_internal.cpp.o' failed
make[2]: *** [modules/core/CMakeFiles/opencv_core.dir/src/hal_internal.cpp.o] Error 1
make[2]: *** Waiting for unfinished jobs.... [ 27%] Built target pch_Generate_opencv_test_optflow
[ 27%] Built target pch_Generate_opencv_perf_optflow
[ 27%] Built target pch_Generate_opencv_test_phase_unwrapping
[ 27%] Built target pch_Generate_opencv_phase_unwrapping
[ 27%] Built target pch_Generate_opencv_test_stitching
[ 27%] Built target pch_Generate_opencv_test_structured_light
[ 27%] Built target pch_Generate_opencv_stitching
[ 27%] Built target pch_Generate_opencv_perf_stitching
[ 27%] Built target pch_Generate_opencv_structured_light
CMakeFiles/Makefile2:1901: recipe for target 'modules/core/CMakeFiles/opencv_core.dir/all' failed
make[1]: *** [modules/core/CMakeFiles/opencv_core.dir/all] Error 2
Makefile:160: recipe for target 'all' failed
make: *** [all] Error 2
解决方案
$ sudo apt-get install liblapacke-dev checkinstall
- 在/build文件夹中找到opencv_lapack.h文件,把#include "LAPACKE_H_PATH-NOTFOUND/lapacke.h"改为#include "lapacke.h"
- 重新编译
(2)CUDA 9.0环境下cmake编译时产生的问题
问题如下
在cmake时会产生关于CUDA版本的问题,这种情况在已装CUDA的条件下会出现,未安装时不会有。
CMake Error: The following variables are used in this project, but they are set to NOTFOUND.
Please set them or make sure they are set and tested correctly in the CMake files:
CUDA_nppi_LIBRARY (ADVANCED)
linked by target "opencv_cudev" in directory
这是由于CUDA 9.0不支持2.0架构,尝试过网上其他方法,包括在cmake时给命令行加入配置属性如CUDA的路径以及配置,皆无效,而以下方案有效。
解决方案:
1) 在/opencv-3.2.0/cmake文件夹下找到FindCUDA.cmake文件
- 找到
find_cuda_helper_libs(nppi)
改为
find_cuda_helper_libs(nppial)
find_cuda_helper_libs(nppicc)
find_cuda_helper_libs(nppicom)
find_cuda_helper_libs(nppidei)
find_cuda_helper_libs(nppif)
find_cuda_helper_libs(nppig)
find_cuda_helper_libs(nppim)
find_cuda_helper_libs(nppist)
find_cuda_helper_libs(nppisu)
find_cuda_helper_libs(nppitc)
- 找到
set(CUDA_npp_LIBRARY "${CUDA_nppc_LIBRARY};${CUDA_nppi_LIBRARY};${CUDA_npps_LIBRARY}")
改为
set(CUDA_npp_LIBRARY "${CUDA_nppc_LIBRARY};${CUDA_nppial_LIBRARY};${CUDA_nppicc_LIBRARY};${CUDA_nppicom_LIBRARY};${CUDA_nppidei_LIBRARY};${CUDA_nppif_LIBRARY};${CUDA_nppig_LIBRARY};${CUDA_nppim_LIBRARY};${CUDA_nppist_LIBRARY};${CUDA_nppisu_LIBRARY};${CUDA_nppitc_LIBRARY};${CUDA_npps_LIBRARY}")
- 找到
unset(CUDA_nppi_LIBRARY CACHE)
改为
unset(CUDA_nppial_LIBRARY CACHE)
unset(CUDA_nppicc_LIBRARY CACHE)
unset(CUDA_nppicom_LIBRARY CACHE)
unset(CUDA_nppidei_LIBRARY CACHE)
unset(CUDA_nppif_LIBRARY CACHE)
unset(CUDA_nppig_LIBRARY CACHE)
unset(CUDA_nppim_LIBRARY CACHE)
unset(CUDA_nppist_LIBRARY CACHE)
unset(CUDA_nppisu_LIBRARY CACHE)
unset(CUDA_nppitc_LIBRARY CACHE)
2) 找到文件OpenCVDetectCUDA.cmake
删除以下几句
if(CUDA_GENERATION STREQUAL "Fermi")
set(__cuda_arch_bin "2.0")
然后将下一行的elsif改为if
3) 找到文件opencv\modules\cudev\include\opencv2\cudev\common.hpp
添加头文件
#include <cuda_fp16.h>
(3)不支持的GPU architecture问题
问题如下
nvcc fatal : Unsupported gpu architecture 'compute_20'
解决方案
在cmake的时候命令行的参数中加入如下一句
-D CUDA_GENERATION=Kepler
(4)编译到99%或100%时卡住的问题
问题如下
[100%] Built target opencv_perf_stitching
[100%] Built target opencv_python2
这个时候,会一直卡着
解决方案
- 不要终止安装,等一等,或者make -j8甚至make -j12多线程安装可以快一点,一般几分钟可以安装完成
5)在CMakeLists.txt中设置指定的OpenCV版本
解决方案
set(OpenCV_DIR "/your_opencv_path/opencv-3.2.0/build")
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
其中your_opencv_path指你的opencv的安装路径,注意区分大小写。
6)CUDA安装的问题
解决方案
$ sudo add-apt-repository ppa:graphics-drivers/ppa
[环境配置]Ubuntu 16.04 源码编译安装OpenCV-3.2.0+OpenCV_contrib-3.2.0及产生的问题的更多相关文章
- [笔记] Ubuntu 18.04源码编译安装OpenCV 4.0流程
标准常规安装方法安装的OpenCV版本比较低,想尝鲜使用4.0版本,只好源码安装. 安装环境 OS:Ubuntu 18.04 64 bit 显卡:NVidia GTX 1080 CUDA:10.0 c ...
- Ubuntu 16.04 源码编译安装PHP7+swoole
备注: Ubuntu 16.04 Server 版安装过程图文详解 Ubuntu16镜像地址: 链接:https://pan.baidu.com/s/1XTVS6BdwPPmSsF-cYF6B7Q 密 ...
- Ubuntu 16.04 源码编译安装PHP7
一.下载PHP7的最新版源码 php7.0.9 下载地址 http://php.net/get/php-7.0.9.tar.gz/from/a/mirror 二.解压 tar -zxf /tmp/p ...
- Ubuntu 16.04源码编译安装nginx 1.10.0
一.下载相关的依赖库 pcre 下载地址 http://120.52.73.43/jaist.dl.sourceforge.net/project/pcre/pcre/8.38/pcre-8.38.t ...
- 在Ubuntu 16.04 LTS下编译安装OpenCV 4.1.1
目录 一 安装前的准备 二 编译并安装OpenCV 4.1.1 注:原创不易,转载请务必注明原作者和出处,感谢支持! OpenCV目前(2019-8-1)的最新版本为4.1.1.本文将介绍如何在Ubu ...
- ubuntu 16.04源码编译OpenCV教程 | compile opencv on ubuntu 16.04
本文首发于个人博客https://kezunlin.me/post/15f5c3e8/,欢迎阅读! compile opencv on ubuntu 16.04 Series Part 1: comp ...
- ubuntu 16.04源码编译和配置caffe详细教程 | Install and Configure Caffe on ubuntu 16.04
本文首发于个人博客https://kezunlin.me/post/b90033a9/,欢迎阅读! Install and Configure Caffe on ubuntu 16.04 Series ...
- Ubuntu 16.04源码编译boost库 编写CMakeLists.txt | compile boost 1.66.0 from source on ubuntu 16.04
本文首发于个人博客https://kezunlin.me/post/d5d4a460/,欢迎阅读! compile boost 1.66.0 from source on ubuntu 16.04 G ...
- [Part 3] 在Ubuntu 16.04源码编译PCL 1.8.1支持VTK和QT
本文首发于个人博客https://kezunlin.me/post/137aa5fc/,欢迎阅读! Part-3: Install and Configure PCL 1.8.1 with vtk q ...
随机推荐
- Django之views视图函数
views视图函数属于MTV中逻辑处理的部分视图函数包含着两个对象,HttpRequest对象和HttpResponse对象 一.HttpRequest对象 HttpRequest对象在Django中 ...
- spring mvc 接收 put参数
web.xml中: <!-- 用户put提交参数 --> <filter> <filter-name>HttpMethodFilter</filter-nam ...
- MySQL优化—工欲善其事,必先利其器(2)
上一篇文章简单介绍了下EXPLAIN的用法,今天主要介绍以下几点内容: 慢查询日志 打开慢查询日志 保存慢查询日志到表中 慢查询日志分析 Percona Toolkit介绍 安装 pt-query-d ...
- NetworkX 图网络处理工具包
简单介绍 NetworkX is a Python package for the creation, manipulation, and study of the structure, dynami ...
- FZU Monthly-201901 tutorial
FZU Monthly-201901 tutorial 题目(难度递增) easy easy-medium medium medium-hard hard 思维难度 AHG F B CE D 编码难度 ...
- [CQOI2009]叶子的染色
传送门:https://www.luogu.org/problemnew/show/P3155 一道挺水的树形dp题,然后我因为一个挺智障的问题debug了一晚上…… 嗯……首先想,如果一个点的颜色和 ...
- 一个web项目web.xml的配置中<context-param>配置作用
<context-param>的作用: web.xml的配置中<context-param>配置作用 1. 启动一个WEB项目的时候,容器(如:Tomcat)会去读它的配置文件 ...
- 8.UDP协议
传输层协议:TCP UDP TCP和UDP有什么区别? TCP是面向连接的 UDP是面向无连接.在互通之前,面向连接的协议会先建立连接,如TCP会三次握手.所谓的建立连接,是为了在客户端和服务端维护连 ...
- Java之Https请求
import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import ...
- Python2.7-weakref
weakref 模块,允许创建对象的弱引用,被弱引用的对象其引用计数不变,对象的引用计数为0时就会被垃圾清理机制释放内存空间,此时对其的弱引用也会失效.在对象会被交叉引用,需要释放内存空间时常用. 模 ...