Description

传送门

Solution

我们以下考虑的情况都是原图中非孤立的点。

题目要求新图的连通块个数。这个不好算,我们考虑计算新图的联通块内的特征点(x,y),即无法通过移动找到(t,c)使得t<x,也无法找到点(x,a)满足a<y。(就是字典序最小吧)可知每个新图连通块内,都有且只会有1个特征点。这两者就等价。

对于新图的点(x,y),假如x,y所在原图连通块已确定,则第一纬度的x一定要是其所在原图联通块的最小编号点。第二维度y的话,如果y所在原图连通块是二分图,则y在被二分出来的两个点集中分别选择最小的点,都是满足要求的。(否则的话,第二维度y只能选其所在连通块内的最小编号点)

直接统计即可。(孤立点的计数。。em这个就比较好推,我就不赘述啦)

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int M=2e5+,N=1e5+;
int n,m,x,y;
struct pas{int y,nxt;
}g[M<<];int h[N],tot;
bool vis[N];int f[N];
int t1,t2,t3;
void cover(int x)
{
vis[x]=;
for (int i=h[x];i;i=g[i].nxt) if (!vis[g[i].y]) cover(g[i].y);
}
bool dfs(int x)
{
vis[x]=;
bool ret=;
int i;
for (i=h[x];i;i=g[i].nxt)
if (!vis[g[i].y]){ f[g[i].y]=f[x]^;if (!dfs(g[i].y)) {ret=;break;}}
else if (f[g[i].y]==f[x]) {ret=;break;}
for (;i;i=g[i].nxt) cover(g[i].y);
return ret;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
g[++tot]=pas{y,h[x]};h[x]=tot;
g[++tot]=pas{x,h[y]};h[y]=tot;
}
for (int i=;i<=n;i++)
{
if (!h[i]) t1++;
else if (!vis[i]) if (dfs(i)) t2++;else t3++;
}
ll ans;
ans=1ll*t1*t1+2ll*t1*(n-t1)+2ll*t2*t2+2ll*t2*t3+1ll*t3*t3; printf("%lld",ans);
}

[agc011C]Squared Graph-[二分图]的更多相关文章

  1. AGC011-C Squared Graph

    题意 给定一个\(n\)个点\(m\)条边的图,构建一个\(n^2\)个点的图,新图的每个点都可以看成一个二元组,新图上的点\((a,b)和(a′,b′)\)之间有边,当且仅当原图中\((a,a′), ...

  2. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  3. POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)

    题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...

  4. POJ2125 Destroying The Graph 二分图 + 最小点权覆盖 + 最小割

    思路来源:http://blog.csdn.net/lenleaves/article/details/7873441 求最小点权覆盖,同样求一个最小割,但是要求出割去了那些边, 只要用最终的剩余网络 ...

  5. POJ 2125 Destroying The Graph 二分图 最小点权覆盖

    POJ2125 题意简述:给定一个有向图,要通过某些操作删除所有的边,每一次操作可以选择任意一个节点删除由其出发的所有边或者通向它的所有边,两个方向有不同的权值.问最小权值和的解决方案,要输出操作. ...

  6. Codeforces.542E.Playing on Graph(二分图)

    题目链接 \(Description\) 给出一个n个点m条边的无向图. 你每次需要选择两个没有边相连的点,将它们合并为一个新点,直到这张图变成了一条链. 最大化这条链的长度,或输出无解. n< ...

  7. 【AtCoder】AGC011 C - Squared Graph

    题解 大意是给出一张图,然后建一张新图,新图的点标号是(a,b) 如果a和c有一条边,b和d有一条边,那么(a,b)和(c,d)之间有一条边 我们把这道题当成这道题来做,给出两张图,如果第一张图有边( ...

  8. Agc011_C Squared Graph

    传送门 题目大意 给定$n$个点$m$条边的简单图(无重边无自环),将有序点对$\{a,b\}$作为新的点,新产生的$n^2$个点中对于两个点,$\{a,b\},\{x,y\}$,当且仅当原图中存在边 ...

  9. Educational Codeforces Round 56 (Rated for Div. 2) D. Beautiful Graph (二分图染色)

    题意:有\(n\)个点,\(m\)条边的无向图,可以给每个点赋点权\({1,2,3}\),使得每个点连的奇偶不同,问有多少种方案,答案对\(998244353\)取模. 题解:要使得每个点所连的奇偶不 ...

随机推荐

  1. EVE Online Third Party Development

    第一部分:price_history表 # 建表语句 CREATE TABLE IF NOT EXISTS `price_history` ( `regionID` INT NOT NULL, `ty ...

  2. 2. DAS,NAS,SAN在数据库存储上的应用

    一. 硬盘接口类型1. 并行接口还是串行接口(1) 并行接口,指的是并行传输的接口,比如有0~9十个数字,用10条传输线,那么每根线只需要传输一位数字,即可完成.从理论上看,并行传输效率很高,但是由于 ...

  3. Java 如何启用 ARM 虚拟机诊断

    现象描述 如何通过 Java 语言实现在创建 ARM 虚拟机时开启诊断,并配置相关指标.   实现思路 调研最高版本的 JAVA SDK(1.1.0)源码发现,SDK 层面并未提供任启动诊断和配置诊断 ...

  4. 运维安全之Tripwire

    转自网络 Tripwire是最为著名的unix下文件系统完整性检查的软件工具,这一软件采用的技术核心就是对每个要监控的文件产生一个数字签名,保留下来. 当文件现在的数字签名与保留的数字签名不一致时,那 ...

  5. ASP.NET动态引用样式表(css)和脚本(js)文件

    // 引入js文件 HtmlGenericControl scriptControl = new HtmlGenericControl("script"); scriptContr ...

  6. 团队作业8-测试与发布(beta阶段)

    小组成员 [组长]金盛昌(201421122043).刘文钊(20142112255).陈笑林(201421122042) 张俊逸(201421122044).陈志建(201421122040).陈金 ...

  7. Terminal Service 终端链接

    2008 64位前有这项服务,之后就与远程管理合并了 如果要设置他的连接数可以去 桌面 --> 管理工具 --> 远程桌面服务 最大数设置成1个好了

  8. java将Excel文件上传并解析为List数组

    前端 //导入excel文件 layui.use('upload', function() { var upload =layui.upload; //指定允许上传的文件类型 var uploadIn ...

  9. 三、git管理修改

    一.修改提交 如下图,Git分工作区和版本库(.git隐藏目录中). 在每次修改后 git add "file name" 其实是把修改内容提交到本地版本库的 暂存区(stage) ...

  10. python第三十六课——1.可迭代对象

    1.可迭代对象: 满足前提: 只要能被循环操作的对象,就可以可迭代对象 举例: str.list.tuple.set.dict.range.generator... 高效的检测一个对象是否是可迭代对象 ...