摘要:

最近打算使用Kinect实现机器人的室内导航,收集了近年来的一些比较好的文章。《基于Kinect系统的场景建模与机器人自主导航》、《Mobile Robots Navigation in Indoor Environments Using Kinect》、《Using a Depth Camera for Indoor Robot Localization and Navigation》、《Depth Camera Based Indoor Mobile Robot Localization and Navigation》、《Using a Depth Camera for Indoor Robot Localization and Navigation》、《Using the Kinect as a Navigation Sensor for Mobile Robotics》。

by Top Liu
最近打算使用Kinect实现机器人的室内导航,收集了近年来的一些比较好的文章。

基于Kinect系统的场景建模与机器人自主导航

【摘要】:本文分别基于微软Kinect系统的单目RGB摄像机以及深度距离受限的RGB-D像机,研究解决室内机器人的6自由度定位问题.首先,在传统不完全自由度估计的基础上,提出了特征点参数的增量式模型以解决运动尺度不确定性问题.该模型和以往的欧几里得、逆深度参数化模型相比,不仅能够显著降低系统状态维数,而且能够保证系统状态的一致可观测性;此外,基于增量式模型,根据Kinect系统中采集的RGB图像和红外图像,实现了对机器人6自由度的运动估计.最后,将Kinect系统采集得到的RGB图像和深度图像序列用于欧几里得参数化模型和增量式参数化模型,对应的实验结果证明了本文所提的自主导航方法的有效性.

下载:http://robot.sia.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=15382

国外文献:

1.Mobile Robots Navigation in Indoor Environments Using Kinect

This paper appears in:
Critical Embedded Systems (CBSEC), 2012 Second Brazilian

没了方便没有IEEE账户的朋友,我已上传到百度文库。下面的文章可直接点击下载

2.Using a Depth Camera for Indoor Robot Localization and Navigation

Abstract—Depth cameras are a rich source of information for
robot indoor localization and safe navigation. The recent availability
of the low-cost Kinect sensor provides a valid alternative
to other available sensors, namely laser-range finders. This
paper presents the first results of the application of a Kinect
sensor on a wheeled indoor service robot for elderly assistance.
The robot makes use of a metric map of the environment’s
walls and uses the depth information of the Kinect camera to
detect the walls and localize itself in the environment. In our
approach an error minimization method is used providing realtime
efficient robot pose estimation. Furthermore, the depth
camera provides information about the obstacles surrounding
the robot, allowing the application of path-finding algorithms
such as D* Lite achieving safe and robust navigation. Using
the proposed solution, we were able to adapt a robotic soccer
robot developed at the University of Aveiro to successfully
navigate in a domestic environment, across different rooms
without colliding with obstacles in the environment.

3.Depth Camera Based Indoor Mobile Robot Localization and Navigation

Abstract—The sheer volume of data generated by depth
cameras provides a challenge to process in real time, in
particular when used for indoor mobile robot localization and
navigation. We introduce the Fast Sampling Plane Filtering
(FSPF) algorithm to reduce the volume of the 3D point cloud
by sampling points from the depth image, and classifying local
grouped sets of points as belonging to planes in 3D (the “plane
filtered” points) or points that do not correspond to planes
within a specified error margin (the “outlier” points). We then
introduce a localization algorithm based on an observation
model that down-projects the plane filtered points on to 2D, and
assigns correspondences for each point to lines in the 2D map.
The full sampled point cloud (consisting of both plane filtered
as well as outlier points) is processed for obstacle avoidance
for autonomous navigation. All our algorithms process only
the depth information, and do not require additional RGB
data. The FSPF, localization and obstacle avoidance algorithms
run in real time at full camera frame rates (30Hz) with low
CPU requirements (16%). We provide experimental results
demonstrating the effectiveness of our approach for indoor
mobile robot localization and navigation. We further compare
the accuracy and robustness in localization using depth cameras
with FSPF vs. alternative approaches that simulate laser
rangefinder scans from the 3D data.

4.Using a Depth Camera for Indoor Robot Localization and Navigation

Abstract—Depth cameras are a rich source of information for
robot indoor localization and safe navigation. The recent availability
of the low-cost Kinect sensor provides a valid alternative
to other available sensors, namely laser-range finders. This
paper presents the first results of the application of a Kinect
sensor on a wheeled indoor service robot for elderly assistance.
The robot makes use of a metric map of the environment’s
walls and uses the depth information of the Kinect camera to
detect the walls and localize itself in the environment. In our
approach an error minimization method is used providing realtime
efficient robot pose estimation. Furthermore, the depth
camera provides information about the obstacles surrounding
the robot, allowing the application of path-finding algorithms
such as D* Lite achieving safe and robust navigation. Using
the proposed solution, we were able to adapt a robotic soccer
robot developed at the University of Aveiro to successfully
navigate in a domestic environment, across different rooms
without colliding with obstacles in the environment.

5.Using the Kinect as a Navigation Sensor for Mobile Robotics

ABSTRACT
Localisation and mapping are the key requirements in mobile
robotics to accomplish navigation. Frequently laser scanners
are used, but they are expensive and only provide 2D mapping
capabilities. In this paper we investigate the suitability
of the Xbox Kinect optical sensor for navigation and simultaneous
localisation and mapping. We present a prototype
which uses the Kinect to capture 3D point cloud data of the
external environment. The data is used in a 3D SLAM to
create 3D models of the environment and localise the robot
in the environment. By projecting the 3D point cloud into
a 2D plane, we then use the Kinect sensor data for a 2D
SLAM algorithm. We compare the performance of Kinectbased
2D and 3D SLAM algorithm with traditional solutions
and show that the use of the Kinect sensor is viable. However,
its smaller field of view and depth range and the higher
processing requirements for the resulting sensor data limit its
range of applications in practice.

Mobile Autonomous Robot using the Kinect

国外一个project

RGB-D 室内导航 paper的更多相关文章

  1. UE4 Navmesh 室内导航设置

    我用的UE版本是4.14.1   系统:win10 64 前不久给样板房里面做了一个扫地机器人,导航设置让我头大了很久,度娘也没有用,最后在谷哥上有所感悟,现在给出本人的设置过程和解决方案. 一开始拖 ...

  2. Robot Perception for Indoor Navigation《室内导航中的机器人感知》

    Felix Endres 论文下载 Technische Fakult¨ atAlbert-Ludwigs-Universit¨ at Freiburg Betreuer: Prof. Dr. Wol ...

  3. 室内定位系列(一)——WiFi位置指纹(译)

    原文:<Advanced Location-Based Technologies and Services>--chapter 2 WiFi Location Fingerprint 作者 ...

  4. 解答室内定位技术新方向:蓝牙AoA定位,值得了解 ——概念了解

    转载搜狐 室内定位一直被炒的非常火的黑科技,也是近年资本追逐的热点,市场上一直有众多宣称可以做到厘米级,米级精度定位的公司,但问题很多,无法大规模商用.近些年有很多人尝试使用蓝牙beacon方式做定位 ...

  5. 滴滴AR实景导航背后的技术

    桔妹导读:机场.商场.火车站等大型室内场所内GPS信号不稳定.室内面积大.路线复杂.用户判断方向难等问题,给在大型场所内发单的乘客找上车点带来了很大的挑战,用户急需一种操作简单.交互友好的引导功能.本 ...

  6. ROS机器人导航一 : 从英雄联盟到ROS导航

    写在前面: 这是这个系列的第一篇 本系列主要从零开始深入探索ROS(机器人操作系统)的导航和规划. 这个系列的目标,是让大家了解: 1.ROS的导航是怎么实现的 2.认识ROS里各种已有的导航算法,清 ...

  7. LIFI热火下的VLC基本链路、标准及发展问题

    和白炽及荧光灯相比,白光发光二极管(LED)具有寿命长.光效高.功耗低.无辐射.安全性好.可靠性高等特点,被称为"绿色照明"并得到迅猛发展.白光LED在未来市场极具竞争力.世界范围 ...

  8. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments

    A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehi ...

  9. [转]综述论文翻译:A Review on Deep Learning Techniques Applied to Semantic Segmentation

    近期主要在学习语义分割相关方法,计划将arXiv上的这篇综述好好翻译下,目前已完成了一部分,但仅仅是尊重原文的直译,后续将继续完成剩余的部分,并对文中提及的多个方法给出自己的理解. _论文地址:htt ...

随机推荐

  1. 高级设计总监的设计方法论——5W1H需求分析法 KANO模型分析法

    本期开始进入设计方法论的学习,大湿自己也是边学边分享,算是巩固一遍吧: 另外这些理论基本都是交叉结合来应用于工作中,我们学习理论但不要拘泥于理论的框架中,掌握后要灵活运用一点- 这些理论一部分来自于我 ...

  2. Mysql遇到的坑

    2018-04-09 这个虽然跟粗心有关,但是Mysql没报错是哪般? select sum(play_count) from tb_user_login where user_id = 61 and ...

  3. ajax post 请求 ,java端使用 request.getParameter 获取不到数据问题

    js端 $.ajax({ type:'POST', data:{a:1}, url:_this.apiUrl+url, dataType:'json',//使用jsonp方式请求 contentTyp ...

  4. UVALive-7041(回文树

    题意:给你两个字符串,问你有多少对公共回文串. 思路:先对a字符串建回文树.然后再把b字符串加进去就好了. #include<cstdio> #include<cmath> # ...

  5. c++中的log函数

    引入#include<cmath> 以e为底:log(exp(n)) 以10为底:log10(n) 以m为底:log(n)/log(m)

  6. 初识python函数

    一.函数 1.什么是函数 函数是对功能或者动作的封装 2.函数的语法和定义 def 函数名(): 函数体 调用: 函数名() 3.关于函数的返回值 return :  返回 1.当程序没写过retur ...

  7. Cisco interview

    A.  1. Self-introduction I am Yanlin He . I am a master degree candidate of school of infomation sci ...

  8. set集合遍历

    对 set 的遍历 1.迭代遍历: Set<String> set = new HashSet<String>(); Iterator<String> it = s ...

  9. 牛客训练五:炫酷路途(c++与dp)

    题目链接:传送门 思路:每隔2^i(0<=i<=INF)就有一条路径,所以可以将从头到尾的路线视为一个有向图, 将ai,bi以此输入,然后将路径从小到大排序,不断更新路径. __built ...

  10. hdu 1540(线段树区间合并)

    题目链接:传送门 参考文章:传送门 题意:n个数字初始连在一条线上,有三种操作, D x表示x号被摧毁: R 表示恢复剩下的通路 Q表示查询标号为x所在的串的最长长度. 思路:线段树的区间合并. #i ...