RGB-D 室内导航 paper
摘要:
最近打算使用Kinect实现机器人的室内导航,收集了近年来的一些比较好的文章。《基于Kinect系统的场景建模与机器人自主导航》、《Mobile Robots Navigation in Indoor Environments Using Kinect》、《Using a Depth Camera for Indoor Robot Localization and Navigation》、《Depth Camera Based Indoor Mobile Robot Localization and Navigation》、《Using a Depth Camera for Indoor Robot Localization and Navigation》、《Using the Kinect as a Navigation Sensor for Mobile Robotics》。
by Top Liu
最近打算使用Kinect实现机器人的室内导航,收集了近年来的一些比较好的文章。
基于Kinect系统的场景建模与机器人自主导航
下载:http://robot.sia.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=15382
国外文献:
1.Mobile Robots Navigation in Indoor Environments Using Kinect
This paper appears in:
Critical Embedded Systems (CBSEC), 2012 Second Brazilian
没了方便没有IEEE账户的朋友,我已上传到百度文库。下面的文章可直接点击下载
2.Using a Depth Camera for Indoor Robot Localization and Navigation
Abstract—Depth cameras are a rich source of information for
robot indoor localization and safe navigation. The recent availability
of the low-cost Kinect sensor provides a valid alternative
to other available sensors, namely laser-range finders. This
paper presents the first results of the application of a Kinect
sensor on a wheeled indoor service robot for elderly assistance.
The robot makes use of a metric map of the environment’s
walls and uses the depth information of the Kinect camera to
detect the walls and localize itself in the environment. In our
approach an error minimization method is used providing realtime
efficient robot pose estimation. Furthermore, the depth
camera provides information about the obstacles surrounding
the robot, allowing the application of path-finding algorithms
such as D* Lite achieving safe and robust navigation. Using
the proposed solution, we were able to adapt a robotic soccer
robot developed at the University of Aveiro to successfully
navigate in a domestic environment, across different rooms
without colliding with obstacles in the environment.
3.Depth Camera Based Indoor Mobile Robot Localization and Navigation
Abstract—The sheer volume of data generated by depth
cameras provides a challenge to process in real time, in
particular when used for indoor mobile robot localization and
navigation. We introduce the Fast Sampling Plane Filtering
(FSPF) algorithm to reduce the volume of the 3D point cloud
by sampling points from the depth image, and classifying local
grouped sets of points as belonging to planes in 3D (the “plane
filtered” points) or points that do not correspond to planes
within a specified error margin (the “outlier” points). We then
introduce a localization algorithm based on an observation
model that down-projects the plane filtered points on to 2D, and
assigns correspondences for each point to lines in the 2D map.
The full sampled point cloud (consisting of both plane filtered
as well as outlier points) is processed for obstacle avoidance
for autonomous navigation. All our algorithms process only
the depth information, and do not require additional RGB
data. The FSPF, localization and obstacle avoidance algorithms
run in real time at full camera frame rates (30Hz) with low
CPU requirements (16%). We provide experimental results
demonstrating the effectiveness of our approach for indoor
mobile robot localization and navigation. We further compare
the accuracy and robustness in localization using depth cameras
with FSPF vs. alternative approaches that simulate laser
rangefinder scans from the 3D data.
4.Using a Depth Camera for Indoor Robot Localization and Navigation
Abstract—Depth cameras are a rich source of information for
robot indoor localization and safe navigation. The recent availability
of the low-cost Kinect sensor provides a valid alternative
to other available sensors, namely laser-range finders. This
paper presents the first results of the application of a Kinect
sensor on a wheeled indoor service robot for elderly assistance.
The robot makes use of a metric map of the environment’s
walls and uses the depth information of the Kinect camera to
detect the walls and localize itself in the environment. In our
approach an error minimization method is used providing realtime
efficient robot pose estimation. Furthermore, the depth
camera provides information about the obstacles surrounding
the robot, allowing the application of path-finding algorithms
such as D* Lite achieving safe and robust navigation. Using
the proposed solution, we were able to adapt a robotic soccer
robot developed at the University of Aveiro to successfully
navigate in a domestic environment, across different rooms
without colliding with obstacles in the environment.
5.Using the Kinect as a Navigation Sensor for Mobile Robotics
ABSTRACT
Localisation and mapping are the key requirements in mobile
robotics to accomplish navigation. Frequently laser scanners
are used, but they are expensive and only provide 2D mapping
capabilities. In this paper we investigate the suitability
of the Xbox Kinect optical sensor for navigation and simultaneous
localisation and mapping. We present a prototype
which uses the Kinect to capture 3D point cloud data of the
external environment. The data is used in a 3D SLAM to
create 3D models of the environment and localise the robot
in the environment. By projecting the 3D point cloud into
a 2D plane, we then use the Kinect sensor data for a 2D
SLAM algorithm. We compare the performance of Kinectbased
2D and 3D SLAM algorithm with traditional solutions
and show that the use of the Kinect sensor is viable. However,
its smaller field of view and depth range and the higher
processing requirements for the resulting sensor data limit its
range of applications in practice.
Mobile Autonomous Robot using the Kinect
国外一个project
RGB-D 室内导航 paper的更多相关文章
- UE4 Navmesh 室内导航设置
我用的UE版本是4.14.1 系统:win10 64 前不久给样板房里面做了一个扫地机器人,导航设置让我头大了很久,度娘也没有用,最后在谷哥上有所感悟,现在给出本人的设置过程和解决方案. 一开始拖 ...
- Robot Perception for Indoor Navigation《室内导航中的机器人感知》
Felix Endres 论文下载 Technische Fakult¨ atAlbert-Ludwigs-Universit¨ at Freiburg Betreuer: Prof. Dr. Wol ...
- 室内定位系列(一)——WiFi位置指纹(译)
原文:<Advanced Location-Based Technologies and Services>--chapter 2 WiFi Location Fingerprint 作者 ...
- 解答室内定位技术新方向:蓝牙AoA定位,值得了解 ——概念了解
转载搜狐 室内定位一直被炒的非常火的黑科技,也是近年资本追逐的热点,市场上一直有众多宣称可以做到厘米级,米级精度定位的公司,但问题很多,无法大规模商用.近些年有很多人尝试使用蓝牙beacon方式做定位 ...
- 滴滴AR实景导航背后的技术
桔妹导读:机场.商场.火车站等大型室内场所内GPS信号不稳定.室内面积大.路线复杂.用户判断方向难等问题,给在大型场所内发单的乘客找上车点带来了很大的挑战,用户急需一种操作简单.交互友好的引导功能.本 ...
- ROS机器人导航一 : 从英雄联盟到ROS导航
写在前面: 这是这个系列的第一篇 本系列主要从零开始深入探索ROS(机器人操作系统)的导航和规划. 这个系列的目标,是让大家了解: 1.ROS的导航是怎么实现的 2.认识ROS里各种已有的导航算法,清 ...
- LIFI热火下的VLC基本链路、标准及发展问题
和白炽及荧光灯相比,白光发光二极管(LED)具有寿命长.光效高.功耗低.无辐射.安全性好.可靠性高等特点,被称为"绿色照明"并得到迅猛发展.白光LED在未来市场极具竞争力.世界范围 ...
- A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments
A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehi ...
- [转]综述论文翻译:A Review on Deep Learning Techniques Applied to Semantic Segmentation
近期主要在学习语义分割相关方法,计划将arXiv上的这篇综述好好翻译下,目前已完成了一部分,但仅仅是尊重原文的直译,后续将继续完成剩余的部分,并对文中提及的多个方法给出自己的理解. _论文地址:htt ...
随机推荐
- Spring Environment(一)API 介绍
Spring Environment(一)API 使用 Spring 系列目录(https://www.cnblogs.com/binarylei/p/10198698.html) Spring 3. ...
- Vue 全家桶介绍
Vue有著名的全家桶系列,包含了vue-router(http://router.vuejs.org),vuex(http://vuex.vuejs.org), vue-resource(https: ...
- java8 forEach Map List[转载]
java8 forEach 在Map和List中的使用 原始的使用 Map<String, Integer> items = new HashMap<>(); items.pu ...
- LSTM长短期记忆神经网络模型简介
LSTM网络也是一种时间递归神经网络,解决RNN的长期依赖关系. RNN模型在训练时会遇到梯度消失或者爆炸的问题,训练时计算和反向传播,梯度倾向于在每一时刻递增或递减,梯度发散到无穷大或者0..... ...
- 取消IDEA中代码重复的检测
- css初识和css选择器
一.css是什么 css(cascading style sheet)定义如何显示HTML元素,给HTML设置样式,显得更为美观. 二.css的引入方式 1.行内引入 在标签中添加一个style是属性 ...
- Jquery中parentsUntil函数调用最容易犯的三个错误
来自 :http://jquery01.diandian.com/post/2012-01-16/14500044 Jquery中parentsUntil函数调用最容易犯的三个错误 Jquery的pa ...
- TCP/IP协议(3):数据链路层
OSI数据链路层上的协议有Ethernet/IEEE802.3/IEEE802.4/IEEE802.5. ARP.RARP等. 1.Ethernet(以太网) 链路层支持很多协议,比如Ethernet ...
- screen对象和history对象
history对象保存着用户上网的历史记录,从窗口被打开的那一刻开始算起 使用go()方法可以在用户的历史记录中任意跳转 history.go(-1);//后退一页 history.go(1);//前 ...
- python读取文件操作.CSV
#-*- encoding:utf-8 -*- import numpy as np import pandas as pd def test(): # header=0,表示文件第0行为列索引 # ...