Spark快速入门 - Spark 1.6.0
Spark快速入门 - Spark 1.6.0
转载请注明出处:http://www.cnblogs.com/BYRans/
快速入门(Quick Start)
本文简单介绍了Spark的使用方式。首先介绍Spark的交互界面的API使用,然后介绍如何使用Java、Scala以及Python编写Spark应用。详细的介绍请阅读Spark Programming Guide。
在按照本文进行操作之前,请确保已安装Spark。本文中的所有操作没有使用HDFS,所以您可以安装任何版本的Hadoop。
Spark交互式Shell的使用(Interactive Analysis with the Spark Shell)
基础(Basics)
Spark的交互式Shell提供了一个简单的方式来学习Spark的API,同时也提供了强大的交互式数据处理能力。Spark Shell支持Scala和Python两种语言。启动支持Scala的Spark Shell方式为
./bin/spark-shell
Spark最重要的一个抽象概念是弹性分布式数据集(Resilient Distributed Dataset)简称RDD。RDDs可以通过Hadoop InputFormats(例如HDFS文件)创建,也可以由其它RDDs转换而来。下面的例子是通过加载Spark目录下的README.md文件生成RDD的例子:
scala> val textFile = sc.textFile("README.md")
textFile: spark.RDD[String] = spark.MappedRDD@2ee9b6e3
RDDs有两种操作:
- actions:返回计算值
- transformations:返回一个新RDDs的引用
actions示例如下:
scala> textFile.count() // Number of items in this RDD
res0: Long = 126
scala> textFile.first() // First item in this RDD
res1: String = # Apache Spark
如下transformations示例,使用filter操作返回了一个新的RDD,该RDD为文件中数据项的子集,该子集符合过滤条件:
scala> val linesWithSpark = textFile.filter(line => line.contains("Spark"))
linesWithSpark: spark.RDD[String] = spark.FilteredRDD@7dd4af09
Spark也支持将actions和transformations一起使用:
scala> textFile.filter(line => line.contains("Spark")).count() // How many lines contain "Spark"?
res3: Long = 15
更多RDD操作(More on RDD Operations)
RDD的actions和transformations操作可以用于更加复杂的计算。下面是查找README.md文件中单词数最多的行的单词数目:
scala> textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)
res4: Long = 15
上面代码中,第一个map操作将一行文本按空格分隔,并计算单词数目,将line映射为一个integer值,并创建了一个新的RDD保存这些integer值。RDD调用reduce计算最大的单词数。示例中map和reduce操作的参数是Scala的函数式编程风格,Spark支持Scala、Java、Python的编程风格,并支持Scala/Java库。例如,使用Scala中的Math.max()函数让程序变得更加简洁易读:
scala> import java.lang.Math
import java.lang.Math
scala> textFile.map(line => line.split(" ").size).reduce((a, b) => Math.max(a, b))
res5: Int = 15
随着Hadoop的流行,MapReduce变为一种常见的数据流模式。Spark可以轻松的实现MapReduce,使用Spark编写MapReduce程序更加简单:
scala> val wordCounts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)
wordCounts: spark.RDD[(String, Int)] = spark.ShuffledAggregatedRDD@71f027b8
上面示例中,使用flatMap、map和reduceByKey操作来计算每个单词在文件中出现的次数,并生成一个结构为<String,Int>的RDD。可以使用collect操作完成单词统计结果的收集整合:
scala> wordCounts.collect()
res6: Array[(String, Int)] = Array((means,1), (under,2), (this,3), (Because,1), (Python,2), (agree,1), (cluster.,1), ...)
缓存(Caching)
Spark支持将数据缓存到集群的分布式内存中。在数据会被重复访问的情况下,将数据缓存到内存能减少数据访问时间,从而提高运行效率。尤其是在数据分布在几十或几百个节点上时,效果更加明显。下面为将数据linesWithSpark缓存到内存的示例:
scala> linesWithSpark.cache()
res7: spark.RDD[String] = spark.FilteredRDD@17e51082
scala> linesWithSpark.count()
res8: Long = 19
scala> linesWithSpark.count()
res9: Long = 19
独立应用(Self-Contained Applications)
假设我们想使用Spark API编写独立应用程序。我们可以使用Scala、Java和Python轻松的编写Spark应用。下面示例为一个简单的应用示例:
- Scala
/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
object SimpleApp {
def main(args: Array[String]) {
val logFile = "YOUR_SPARK_HOME/README.md" // Should be some file on your system
val conf = new SparkConf().setAppName("Simple Application")
val sc = new SparkContext(conf)
val logData = sc.textFile(logFile, 2).cache()
val numAs = logData.filter(line => line.contains("a")).count()
val numBs = logData.filter(line => line.contains("b")).count()
println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
}
}
上面程序分别统计了README中包含字符‘a’以及‘b’的行数。与前面Spark shell例子不同的是,我们需要初始化SparkContext。
我们通过SparkContext创建了一个SparkConf对象,SparkConf对象包含应用的基本信息。
我们基于Spark API编写应用,所以我们需要编写一个名为“simple.sbt”的sbt配置文件,用于指明Spark为该应用的一个依赖。下面的sbt配置文件示例中,还增加了Spark的一个依赖库“spark-core”:
name := "Simple Project"
version := "1.0"
scalaVersion := "2.10.5"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.6.0"
为了让sbt正确执行,我们需要对SimpleApp.scala和simple.sbt根据sbt要求的目录结构布局。如果布局正确,就可以生成该应用的JAR包,使用spark-submit命令即可运行该程序。
- Java
/* SimpleApp.java */
import org.apache.spark.api.java.*;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.Function;
public class SimpleApp {
public static void main(String[] args) {
String logFile = "YOUR_SPARK_HOME/README.md"; // Should be some file on your system
SparkConf conf = new SparkConf().setAppName("Simple Application");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> logData = sc.textFile(logFile).cache();
long numAs = logData.filter(new Function<String, Boolean>() {
public Boolean call(String s) { return s.contains("a"); }
}).count();
long numBs = logData.filter(new Function<String, Boolean>() {
public Boolean call(String s) { return s.contains("b"); }
}).count();
System.out.println("Lines with a: " + numAs + ", lines with b: " + numBs);
}
}
该示例的代码逻辑同上一段Scala示例代码。与Scala示例类似,首先初始化了SparkContext,通过SparkContext创建了JavaSparkContext对象。并创建了RDDs以及执行transformations操作。最后,通过继承了spark.api.java.function.Function
的类将函数传给Spark。
在这里,使用Maven进行编译,Maven的pom.xml如下:
<project>
<groupId>edu.berkeley</groupId>
<artifactId>simple-project</artifactId>
<modelVersion>4.0.0</modelVersion>
<name>Simple Project</name>
<packaging>jar</packaging>
<version>1.0</version>
<dependencies>
<dependency> <!-- Spark dependency -->
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.6.0</version>
</dependency>
</dependencies>
</project>
按照Maven的要求架构配置文件位置:
$ find .
./pom.xml
./src
./src/main
./src/main/java
./src/main/java/SimpleApp.java
现在,就可以使用Maven打包应用,以及使用命令./bin/spark-submit.
执行该应用程序。示例如下:
# Package a JAR containing your application
$ mvn package
...
[INFO] Building jar: {..}/{..}/target/simple-project-1.0.jar
# Use spark-submit to run your application
$ YOUR_SPARK_HOME/bin/spark-submit \
--class "SimpleApp" \
--master local[4] \
target/simple-project-1.0.jar
...
Lines with a: 46, Lines with b: 23
Spark快速入门 - Spark 1.6.0的更多相关文章
- Spark快速入门
Spark 快速入门 本教程快速介绍了Spark的使用. 首先我们介绍了通过Spark 交互式shell调用API( Python或者scala代码),然后演示如何使用Java, Scala或者P ...
- [转] Spark快速入门指南 – Spark安装与基础使用
[From] https://blog.csdn.net/w405722907/article/details/77943331 Spark快速入门指南 – Spark安装与基础使用 2017年09月 ...
- [大数据之Spark]——快速入门
本篇文档是介绍如何快速使用spark,首先将会介绍下spark在shell中的交互api,然后展示下如何使用java,scala,python等语言编写应用.可以查看编程指南了解更多的内容. 为了良好 ...
- 005 Spark快速入门的简单程序案例
参考:官网的quick start http://spark.apache.org/docs/1.6.0/quick-start.html 这里只是在shell命令行中简单的书写一些命令,做一个简单的 ...
- 【转】Spark快速入门指南
尊重版权,原文:http://blog.csdn.net/macyang/article/details/7100523 - Spark是什么? Spark is a MapReduce-like ...
- spark 快速入门 java API
Spark的核心就是RDD,对SPARK的使用入门也就是对RDD的使用,包括action和transformation 对于Java的开发者,单单看文档根本是没有办法理解每个API的作用的,所以每个S ...
- Spark快速入门(1)
1 安装Spark 首先,到 https://spark.apache.org/downloads.html 选择最新的 Spark 版本和 Hadoop 版本(实际上我们暂时用不上 Hadoop,所 ...
- spark快速入门之最简配置 spark 1.5.2 hadoop 2.7 配置
配置的伪分布式,ubuntu14.04上 先配置hadoop,参见这个博客,讲的很好 http://www.powerxing.com/install-hadoop/, 但是我在配的过程中还是遇到了问 ...
- Spark:Spark 编程模型及快速入门
http://blog.csdn.net/pipisorry/article/details/52366356 Spark编程模型 SparkContext类和SparkConf类 代码中初始化 我们 ...
随机推荐
- Spring整合Ehcache管理缓存
前言 Ehcache 是一个成熟的缓存框架,你可以直接使用它来管理你的缓存. Spring 提供了对缓存功能的抽象:即允许绑定不同的缓存解决方案(如Ehcache),但本身不直接提供缓存功能的实现.它 ...
- 【开源框架】SqlSugarRepository 全库ORM 正式发布
SqlSugarRepository.dll 全库开发框架支持 四种数据库:SqlServer. MySql .Oracle和Sqlite. SqlSugarRepository是为全库开发而生的OR ...
- 创建ASP.NET Core MVC应用程序(3)-基于Entity Framework Core(Code First)创建MySQL数据库表
创建ASP.NET Core MVC应用程序(3)-基于Entity Framework Core(Code First)创建MySQL数据库表 创建数据模型类(POCO类) 在Models文件夹下添 ...
- 创建ASP.NET Core MVC应用程序(1)-添加Controller和View
创建ASP.NET Core MVC应用程序(1)-添加Controller和View 参考文档:Getting started with ASP.NET Core MVC and Visual St ...
- WinForm 窗体属性 窗体美化
WinForm是·Net开发平台中对Windows Form的一种称谓. Windows窗体的一些重要特点如下: 功能强大:Windows窗体可用于设计窗体和可视控件,以创建丰富的基于Windows的 ...
- 什么是java 序列化,如何实现java 序列化?
我们有时候将一个 java 对象变成字节流的形式传出去或者从一个字节流中恢复成一个java 对象,例如,要将java 对象存储到硬盘或者传送给网络上的其他计算机,这个过程我们可以自己写代码去把一个ja ...
- MySQL 相关总结
MySQL 优秀在线教程 RUNOOB-SQL 教程 MySQL 常用命令 导出操作 -- 某数据库 全部表 结构和数据 mysqldump -h192.168.8.152 -uroot -p man ...
- 【linux草鞋应用编程系列】_1_ 开篇_系统调用IO接口与标准IO接口
最近学习linux系统下的应用编程,参考书籍是那本称为神书的<Unix环境高级编程>,个人感觉神书不是写给草鞋看的,而是 写给大神看的,如果没有一定的基础那么看这本书可能会感到有些头重脚轻 ...
- c语言 sizeof理解
1.基本数据类型 char :1 short:2 int 4 long 4 long long :8 float:4 double :8字节. 2.数组:对应的基本数 ...
- 从零开始学 Java - 利用 Nginx 负载均衡实现 Web 服务器更新不影响访问
还记得那些美妙的夜晚吗 你洗洗打算看一个小电影就睡了,这个时候突然想起来今天晚上是服务器更新的日子,你要在凌晨时分去把最新的代码更新到服务器,以保证明天大家一觉醒来打开网站,发现昨天的 Bug 都不见 ...