题目

看到题解区很多人直接给出结论:答案为 \(\displaystyle \sum_{i=1}^n\lfloor{n\over i}\rfloor\) ,没给出证明,这里给出证明


【分析】

首先,我们可以知道 \(\displaystyle f(n)=\sum_{d\mid n}1\)

有的同学看不懂这个公式,我解释一下,这个公式表达:

枚举 \(n\) 的因数 \(d\),每枚举一个因数 \(d\), \(f(n)\) 加 \(1\)

\(d\mid n\) 指 \(d\) 是 \(n\) 的因数

这样一来,我们就可以和题目的对应上了: \(f(n)\) 代表 \(n\) 的因数个数


\(\displaystyle f(n)=\sum_{d\mid n}1\) 还有一种表达方式是 \(\displaystyle f(n)=\sum_{d=1}^n[d\mid n]\)

后面那个鬼东西 \([d\mid n]\) 是一个判断正误的函数,正确为 \(1\) ,错误为 \(0\)

这个应该理解起来也不难:

枚举每一个数 \(d\) ,当 \(d\) 是 \(n\) 的因数时, \(f(n)\) 加 \(1\)


题目要求的 \(\displaystyle M=\sum_{i=1}^n f(i)\)

我们代入上面的定义式:

\(\quad \displaystyle M\)

\(\displaystyle=\sum_{i=1}^n\sum_{d\mid i}1\)

\(\displaystyle=\sum_{i=1}^n\sum_{d=1}^i[d\mid i]\)

我们调换一下枚举的顺序,把 \(d\) 的枚举提前。

相当于考虑 \(d=1\) 时,对 \(i=1,2,3\dots n\) 的贡献; \(d=2\) 时对 \(i=1,2,3\dots n\) 的贡献; \(\dots\) ;\(d=n\) 时对 \(i=1,2,3\dots n\) 的贡献

\(\displaystyle=\sum_{d=1}^n\sum_{i=1}^n[d\mid i]\)

对于一个固定的 \(d\) ,\(\displaystyle\sum_{i=1}^n[d\mid i]\) 的意义非常直观:

\(1\)~\(n\) 中,有多少个数以 \(d\) 为因数,即多少个数是 \(d\) 的倍数

应该是 \(\lfloor{n\over d}\rfloor\) 吧

所以我们得到 \(\displaystyle M=\sum_{d=1}^n\lfloor{n\over d}\rfloor\)


【代码】

那本蒟蒻就放 我码风极丑的 代码了:

C++ 版:

#include<iostream>
using namespace std;
int main(){
int n,ans=0;
cin>>n;
for(int i=1;i<=n;i++) ans+=n/i;
cout<<ans;
}

Python 3 版:

ans=0
n=int(input())
for i in range(1,n+1):
ans+=n//i
print(ans)

最后安利一下本蒟蒻的博客

题解 P1403 【[AHOI2005]约数研究】的更多相关文章

  1. 洛谷——P1403 [AHOI2005]约数研究

    P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工 ...

  2. 洛谷P1403 [AHOI2005] 约数研究 [数论分块]

    题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...

  3. P1403 [AHOI2005]约数研究 题解

    转载luogu某位神犇的题解QAQ 这题重点在于一个公式: f(i)=n/i 至于公式是怎么推出来的,看我解释: 1-n的因子个数,可以看成共含有2因子的数的个数+含有3因子的数的个数……+含有n因子 ...

  4. P1403 [AHOI2005]约数研究

    原题链接 https://www.luogu.org/problemnew/show/P1403 这个好难啊,求约数和一般的套路就是求1--n所有的约数再一一求和,求约数又要用for循环来判断.... ...

  5. 洛谷 P1403 [AHOI2005]约数研究

    怎么会有这么水的省选题 一定是个签到题. 好歹它也是个省选题,独立做出要纪念一下 很容易发现在1~n中,i的因子数是n / i 那就枚举每一个i然后加起来就OK了 #include<cstdio ...

  6. BZOJ 1968_P1403 [AHOI2005]约数研究--p2260bzoj2956-模积和∑----信息学中的数论分块

    第一部分 P1403 [AHOI2005]约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一 ...

  7. [AHOI2005]约数研究

    题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩,小联被允许用“Samu ...

  8. 【洛谷P1403】约数研究

    题目大意:求\[\sum\limits_{i=1}^n\sum\limits_{d|i}1\] 题解:交换求和顺序即可. \[\sum\limits_{i=1}^n\sum\limits_{d|i}1 ...

  9. BZOJ1968 [Ahoi2005] 约数研究

    Description Input 只有一行一个整数 N(0 < N < 1000000). Output 只有一行输出,为整数M,即f(1)到f(N)的累加和. Sample Input ...

随机推荐

  1. php绕过open_basedir设置

    原理关于open_basedir    open_basedir是php.ini中的一个配置选项    它可将用户访问文件的活动范围限制在指定的区域,    假设open_basedir=/home/ ...

  2. SSH和SFTP的简单使用

    ssh命令 ssh 命令用来远程登录linux主机:ssh username@hostname 默认端口是22,如果设定了其他端口,那么使用-p参数来指明,例如端口若改为6666, 则登录命令变为 s ...

  3. spingcloud--hystrix(断路器)

    hystrix由来:服务器宕机或者依赖关系失败. hystrix: Hystrix是一个用于处理分布式系统的延迟和容错的开源库,在分布式系统里,许多依赖不可避免的会调用失败,比如超时.异常等,Hyst ...

  4. AS-PATH(路径属性)路由路径欺骗术

    AS-PATH(路径属性)路由路径欺骗术: ①:抓取感兴趣流量——前缀与访问 ②:创建路由地图 ③:路由地图第一法则——permit 10 ④:在第一法则中,匹配(感兴趣流量) ⑤:设置 路径欺骗术— ...

  5. VS Code 单文件、多文件(工程) 配置文件

    针对于单文件编译运行,需要在代码文件夹下建立子文件夹 .vscode ,并放置三个文件 1:c_cpp_properties.json,注意更改7.8.11行的路径 { "configura ...

  6. [Machine Learning][BP]The Vectorized Back Propagation Algorithm

    Reference: https://www.cs.swarthmore.edu/~meeden/cs81/s10/BackPropDeriv.pdf I spent nearly one hour ...

  7. ES6 之 Reflect 的方法总结

    1. 概述 将 Object 对象的一些明显属于语言内部的方法(比如 Object.defineProperty ),放到 Reflect 对象上. 修改某些 Object 方法的返回结果,让其变得更 ...

  8. HDU 4921 Map DFS+状态压缩+乘法计数

    算最多十条链,能截取某前缀段,每种方案都可以算出一个权值,每种方案的概率都是总数分之一,问最后能构成的所有可能方案数. 对计数原理不太敏感,知道是DFS先把链求出来,但是想怎么统计方案的时候想了好久, ...

  9. Java的包装类

    一.概述 因为基本数据类型的变量身上没有任何的方法和属性,所以针对基本数据类型提供了对应的类形式--包装类. 利用这个类产生对象,调用对象身上的方法来操作这个数据. 二.分类 包装类分为以下几种: 基 ...

  10. vue 循环和v-if 不能混合使用

    <div class="item page-item" v-for="(item,i) in pageNum" @click="setCurre ...