题意

有\(n\)场比赛,他每次等概率地选择一场,选择的比赛可能有没ac过的题,他一定会ac这次比赛中的某一道,并说我好菜啊。如果全ac过了,也会说我好菜啊。求期望说多少次我好菜啊。

注意题目中每场题的范围是1到3

我们可以把相同题数的场看成同一种,那就有三种

把题意抽象成取球游戏,就是\(i_1\)类型的球有\(a_1\)个,\(i_2\)类型的球有\(a_2\)个,\(i_3\)类型的球有\(a_3\)个,即将数量一样的比赛抽象成同一种球,问期望用多少次可以取到所有不同的球。不同种类的球取出会带来不同的变化,取了\(i_1\)类型的球会导致剩余没取的个数减一,但取了\(i_3\)类型的球因为这个比赛的题目数减一变成\(i_2\)类型,取了\(i_2\)类型的球就变成\(i_1\)类型的。

这个问题挺难的,那我们就先看一下最基本的取球游戏(彩票收集问题)

前序知识

最基本的取球问题就是\(n\)个球,求将每个球至少取一次,问期望用多少次可以取到所有不同的球。

假设现在还剩下\(i\)个球没取过,那么这时取到没取过的球的概率是

\(P=i / N\)

由于这个事件满足几何分布,所以他的期望就是\(1/p\),就是\(N/i\)

几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。

用\(dp[i]\)表示剩下\(i\)个球没取时多少次取到剩下所有不同的球的期望

那么可以得出一下递推式:

\[dp[0]=0
\]

由期望的可加性:

\[dp[i]=N/i+dp[i-1]
\]

本题题解

这题就是取球游戏改编的,但是状态比较多,变成了3维的

根据上面的递推式和本题题意,得出以下状态转移方程,令\(dp[i][j][k]\)为剩下三种球没取时多少次取到所有不同的球的期望。再令\(M=i+j+k\)

\[dp[0][0][0]=0
\]

因为当前的状态有三种可能状态转移,并且每场比赛的选择都是等概率的,将后继状态已经求出的期望加上当前状态取出不同的球的期望。

\[dp[i][j][k]=N/M+dp[i-1][j][k]* i/M+dp[i+1][j-1][k] * j/M+dp[i][j+1][k-1]* k/M
\]

化简一下就是(好像没怎么化简)

\[dp[i][j][k]=(N+dp[i-1][j][k] * i+dp[i+1][j-1][k] * j+dp[i][j+1][k-1] * k)/M
\]

代码

可以将\(k\)优化一下,枚举所有的状态,然后暴力转移

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn = 505;
const int mod=17680321;
ll inv[maxn];
ll num[4];
ll dp[maxn][maxn][2];
void init(int n){
inv[1]=1;
for(int i=2;i<=n;++i){
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
}
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
int n;
cin>>n;
init(n);
for(int i=1,a;i<=n;++i) {
cin>>a;
num[a]++;
}
dp[0][0][0]=0;
int t=1;
for (int k = 0; k <= num[3]; k++) {
t ^= 1;
for (int j = 0; j +k<= n; j++){
for (int i = 0; i +k+j<= n; i++){
if (i || j || k) {
dp[i][j][t] = 1ll * n * inv[i + j + k] % mod;
if (i)dp[i][j][t] = (dp[i][j][t] + 1ll * dp[i - 1][j][t] * i % mod * inv[i + j + k]) % mod;
if (j)dp[i][j][t] = (dp[i][j][t] + 1ll * dp[i + 1][j - 1][t] * j % mod * inv[i + j + k]) % mod;
if (k)dp[i][j][t] = (dp[i][j][t] + 1ll * dp[i][j + 1][t ^ 1] * k % mod * inv[i + j + k]) % mod;
}
}
} }
cout<<dp[num[1]][num[2]][t]<<endl;
return 0 ;
}

总结

与常规的求解不同,数学期望经常逆向推出。

常言道:"正向推概率,反向推期望"

为什么呢?

大家可以百度一下(逃

博客:https://www.cnblogs.com/smallocean/

[概率DP]相逢是温厚的更多相关文章

  1. Codeforces 28C [概率DP]

    /* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队 ...

  2. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  3. POJ 2096 Collecting Bugs (概率DP)

    题意:给定 n 类bug,和 s 个子系统,每天可以找出一个bug,求找出 n 类型的bug,并且 s 个都至少有一个的期望是多少. 析:应该是一个很简单的概率DP,dp[i][j] 表示已经从 j ...

  4. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

  5. 概率DP light oj 1030

    t组数据 n块黄金 到这里就捡起来 出发点1 到n结束  点+位置>n 重掷一次 dp[i] 代表到这里的概率 dp[i]=(dp[i-1]+dp[i-2]... )/6  如果满6个的话 否则 ...

  6. hdu 4050 2011北京赛区网络赛K 概率dp ***

    题目:给出1-n连续的方格,从0开始,每一个格子有4个状态,左右脚交替,向右跳,而且每一步的步长必须在给定的区间之内.当跳出n个格子或者没有格子可以跳的时候就结束了,求出游戏的期望步数 0:表示不能到 ...

  7. [转]概率DP总结 by kuangbin

    概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...

  8. SGU 422 Fast Typing(概率DP)

    题目大意 某人在打字机上打一个字符串,给出了他打每个字符出错的概率 q[i]. 打一个字符需要单位1的时间,删除一个字符也需要单位1的时间.在任意时刻,他可以花 t 的时间检查整个打出来的字符串,并且 ...

  9. HDU 4050 wolf5x(动态规划-概率DP)

    wolf5x Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

随机推荐

  1. UVALive 3634 数据结构模拟

    这题真是坑啊,题意不明,其实就是往桟里面压入空的set集合,所以之前的询问大小都是只有0,只有add的时候,才会产生新的占空间的集合 用stack和set直接进行模拟 #include <ios ...

  2. 建立更可靠的OOP程序-类和成员的访问控制

    1. public 成员(公共成员) (1)使用this 关键字的类的成员允许在任何地方被访问. (2)使用 prototype 定义的属性和方法都是公共成员. 这些属性和方法可以在外面任何地方被访问 ...

  3. caffe中运行mnist

    mnist样本字库嘚图片转换:# coding=utf-8import numpy as npimport struct import matplotlib.pyplot as plt from PI ...

  4. Python String startswith() Method

    一,摘自官方API  https://docs.python.org/3/library/stdtypes.html#methods str.startswith(prefix[, start[, e ...

  5. 最短路问题-- Dijkstra Choose the best route

    Choose the best route Problem Description One day , Kiki wants to visit one of her friends. As she i ...

  6. Jenkins 插件中心国内镜像源发布

    以下文章来源于Jenkins,作者LinuxSuRen Jenkins 社区的网络基础设施都是架设在国外的服务器上,而且,并没有在国内有 CDN 或者负载均衡的配置.对所有的 Jenkins 用户而言 ...

  7. 京东云携手Mellanox,设计最先进SDN硬件加速功能并开源

    京东云携手Mellanox,设计最先进SDN硬件加速功能并开源 最新技术播报 京东云开发者社区  导语新一代 SDN.NFV 和云原生计算技术正在推动应用实例的极限,这些实例可以在虚拟化和容器化的服务 ...

  8. Codeforces Round #619 (Div. 2)E思维+二维RMQ

    题:https://codeforces.com/contest/1301/problem/E 题意:给个n*m的图形,q个询问,每次询问问询问区间最大的合法logo的面积是多少 分析:由于logo是 ...

  9. Window Mysql5.7免安装版配置

    1.下载mysql 5.7 32位:https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.19-win32.zip 5.7 64位:https ...

  10. c#连接sql server数据库字符串

    第一种方式 Data Source=数据库地址;Initial Catalog=数据库名称;User Id=数据库登录名;Password=数据库密码;[Integrated Security=SSP ...