Codeforces Round #565 (Div. 3)--D. Recover it!--思维+欧拉筛
D. Recover it!
Authors guessed an array aa consisting of nn integers; each integer is
not less than 22 and not greater than 2⋅1052⋅105. You don’t know the
array aa, but you know the array bb which is formed from it with the
following sequence of operations:Firstly, let the array bb be equal to the array aa; Secondly, for each
ii from 11 to nn: if aiai is a prime number, then one integer paipai
is appended to array bb, where pp is an infinite sequence of prime
numbers (2,3,5,…2,3,5,…); otherwise (if aiai is not a prime number),
the greatest divisor of aiai which is not equal to aiai is appended to
bb; Then the obtained array of length 2n2n is shuffled and given to
you in the input. Here paipai means the aiai-th prime number. The
first prime p1=2p1=2, the second one is p2=3p2=3, and so on.Your task is to recover any suitable array aa that forms the given
array bb. It is guaranteed that the answer exists (so the array bb is
obtained from some suitable array aa). If there are multiple answers,
you can print any.Input
The first line of the input contains one integer nn
(1≤n≤2⋅1051≤n≤2⋅105) — the number of elements in aa.The second line of the input contains 2n2n integers
b1,b2,…,b2nb1,b2,…,b2n (2≤bi≤27501312≤bi≤2750131), where bibi is the
ii-th element of bb. 27501312750131 is the 199999199999-th prime
number.Output
In the only line of the output print nn integers a1,a2,…,ana1,a2,…,an
(2≤ai≤2⋅1052≤ai≤2⋅105) in any order — the array aa from which the
array bb can be obtained using the sequence of moves given in the
problem statement. If there are multiple answers, you can print any.
Examples
input
Copy
3
3 5 2 3 2 4
output
Copy
3 4 2
input
Copy
1
2750131 199999
output
Copy
199999
input
Copy
1
3 6
output
Copy
6
题解如下
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
const int Len = 1e6;
int prime[Len * 3];
int ar[Len * 3];
int br[3 * Len];
int barrel[3 * Len];
vector<int> vec;
int n;
bool cmp(int a,int b)
{
return a > b;
}
void Prime()
{
for(int i = 2; i <= Len * 3; i ++)
prime[i] = 1;
//素数筛选法
for(int i = 2; i * i <= Len * 3; i ++)
{
if(prime[i])
{
for(int j = i * i; j <= Len * 3; j += i)
prime[j] = 0;
}
}
}
void init()
{
Prime();
int pos = 1;
for(int i = 2; i <= Len * 3; i ++)
{
if(prime[i])
{
ar[pos ++] = i;
}
}
//输入
for(int i = 1; i <= 2 * n; i ++)
{
scanf("%d",&br[i]);
}
//统计各个数字出现的次数
for(int i = 1; i <= 2 * n; i ++)
{
barrel[br[i]] ++;
}
sort(br + 1 , br + 2 * n + 1 , cmp);
}
void Solve()
{
init();
for(int i = 1; i <= 2 * n; i ++)
{
int cnt = barrel[br[i]];
if(cnt > 0)
{
if(! prime[br[i]])
{
int mx_divisor;
for(int j = 2; ; j ++)
if(br[i] % j == 0)
{
mx_divisor = br[i] / j;
break;
}
if(barrel[mx_divisor] > 0)
{
barrel[mx_divisor] --;
vec.push_back(br[i]);
barrel[br[i]] --;
}
}
else
{
int pri = ar[br[i]];
if(barrel[pri] > 0)
{
barrel[pri] --;
vec.push_back(br[i]);
barrel[br[i]] --;
}
}
}
}
for(auto x : vec)
printf("%d ",x);
}
int main()
{
//freopen("test.txt","r",stdin);
scanf("%d",&n);
Solve();
return 0;
}
Codeforces Round #565 (Div. 3)--D. Recover it!--思维+欧拉筛的更多相关文章
- Codeforces Round #565 (Div. 3) C. Lose it! (思维)
题意:给你一串只含\(4,8,15,16,23,42\)的序列,如果它满足长度是\(6\)的倍数并且有\(\frac {k}{6}\)个子序列是\([4,8,15,16,23,42]\),则定义它是好 ...
- Codeforces Round #288 (Div. 2)D. Tanya and Password 欧拉通路
D. Tanya and Password Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/508 ...
- Product Oriented Recurrence(Codeforces Round #566 (Div. 2)E+矩阵快速幂+欧拉降幂)
传送门 题目 \[ \begin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\\ \end{aligned} \] 思路 我们通过迭代发 ...
- Codeforces Round #565 (Div. 3) B. Merge it!
链接: https://codeforces.com/contest/1176/problem/B 题意: You are given an array a consisting of n integ ...
- Codeforces Round #565 (Div. 3) A. Divide it!
链接: https://codeforces.com/contest/1176/problem/A 题意: You are given an integer n. You can perform an ...
- Codeforces Round #565 (Div. 3) C. Lose it!
链接: https://codeforces.com/contest/1176/problem/C 题意: You are given an array a consisting of n integ ...
- Codeforces Round #565 (Div. 3) B
B. Merge it! 题目链接:http://codeforces.com/contest/1176/problem/B 题目 You are given an array a consistin ...
- Codeforces Round #565 (Div. 3) A
A. Divide it! 题目链接:http://codeforces.com/contest/1176/problem/A 题目 You are given an integer n You ca ...
- Codeforces Round #565 (Div. 3) F.Destroy it!
题目地址:http://codeforces.com/contest/1176/problem/F 思路:其实就是一个01背包问题,只是添加了回合和每回合的01限制,和每当已用牌数到了10的倍数,那张 ...
随机推荐
- 【,NetCore】WebApi使用统一时间格式
1.在Startup中配置统一时间格式 services.AddMvc() .AddJsonOptions(options => { //配置时间序列化格式 options.Serializer ...
- 解决Hexo博客模板hexo-theme-next的翻页按钮不正常显示问题
用Hexo搭了个Gitpage的博客,兴冲冲的发了11篇博文后发现翻页按钮不正常显示,显示为<i class="fa fa-angle-right"></i> ...
- xadmin安装和配置
1.在虚拟环境pip install xadmin 2.安装完成之后在settings.py的install app里面添加xadmin和crispy_forms 3.在主项目url里面把原来的adm ...
- JavaFX之多个FXML加载和通信
前言 在使用了FXML设计布局后,新的问题随之而来,当一个程序需要多个界面时,我们不可能在一个FXML中写出全部布局,这样太过于臃肿不易查看和维护(当然非要这么做也是可以的),这里就涉及到如何在一个F ...
- 面试总被问分布式ID怎么办? 滴滴(Tinyid)甩给他
整理了一些Java方面的架构.面试资料(微服务.集群.分布式.中间件等),有需要的小伙伴可以关注公众号[程序员内点事],无套路自行领取 一口气说出 9种 分布式ID生成方式,面试官有点懵了 面试总被问 ...
- JVM05——JVM类加载机制知多少
我们已经讲过 JVM 相关的很多常见知识点,感兴趣的朋友可以在我的往期文章中查看.接下来将继续为各位带来 JVM 类加载机制.关注我的公众号「Java面典」了解更多 Java 相关知识点. 类生命周期 ...
- 一个交互式可视化Python库——Bokeh
本篇为<Python数据可视化实战>第十篇文章,我们一起学习一个交互式可视化Python库--Bokeh. Bokeh基础 Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Py ...
- 大数据存储利器 - Hbase 基础图解
由于疫情原因在家办公,导致很长一段时间没有更新内容,这次终于带来一篇干货,是一篇关于 Hbase架构原理 的分享. Hbase 作为实时存储框架在大数据业务下承担着举足轻重的地位,可以说目前绝大多数大 ...
- 03.文件I/O
UNIX系统中的大多数文件I/O只需用到5个函数:open.read.write.lseek和close. 本章所说明的函数称为不带缓冲的I/O.不带缓冲指的是每个read和write都调用内核中的一 ...
- isEmpty 判空函数 内部分别判断是 null 空数组 等
import { oneOf, isEmpty } from '@/libs/tools' export const isEmpty = (value) => { if (value == nu ...